Properties

Label 2-2160-1.1-c3-0-28
Degree $2$
Conductor $2160$
Sign $1$
Analytic cond. $127.444$
Root an. cond. $11.2891$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5·5-s − 16.1·7-s + 55.5·11-s + 43.4·13-s + 25.5·17-s + 103.·19-s + 4.47·23-s + 25·25-s − 4.47·29-s + 45.1·31-s + 80.5·35-s + 69.5·37-s − 483.·41-s − 151.·43-s − 67.6·47-s − 83.6·49-s − 278.·53-s − 277.·55-s + 257.·59-s − 489.·61-s − 217.·65-s + 772.·67-s + 536.·71-s − 65.5·73-s − 894.·77-s − 749.·79-s + 1.26e3·83-s + ⋯
L(s)  = 1  − 0.447·5-s − 0.869·7-s + 1.52·11-s + 0.926·13-s + 0.364·17-s + 1.24·19-s + 0.0405·23-s + 0.200·25-s − 0.0286·29-s + 0.261·31-s + 0.388·35-s + 0.309·37-s − 1.84·41-s − 0.538·43-s − 0.209·47-s − 0.243·49-s − 0.722·53-s − 0.680·55-s + 0.569·59-s − 1.02·61-s − 0.414·65-s + 1.40·67-s + 0.897·71-s − 0.105·73-s − 1.32·77-s − 1.06·79-s + 1.66·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2160 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2160 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2160\)    =    \(2^{4} \cdot 3^{3} \cdot 5\)
Sign: $1$
Analytic conductor: \(127.444\)
Root analytic conductor: \(11.2891\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2160,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(2.131538381\)
\(L(\frac12)\) \(\approx\) \(2.131538381\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 + 5T \)
good7 \( 1 + 16.1T + 343T^{2} \)
11 \( 1 - 55.5T + 1.33e3T^{2} \)
13 \( 1 - 43.4T + 2.19e3T^{2} \)
17 \( 1 - 25.5T + 4.91e3T^{2} \)
19 \( 1 - 103.T + 6.85e3T^{2} \)
23 \( 1 - 4.47T + 1.21e4T^{2} \)
29 \( 1 + 4.47T + 2.43e4T^{2} \)
31 \( 1 - 45.1T + 2.97e4T^{2} \)
37 \( 1 - 69.5T + 5.06e4T^{2} \)
41 \( 1 + 483.T + 6.89e4T^{2} \)
43 \( 1 + 151.T + 7.95e4T^{2} \)
47 \( 1 + 67.6T + 1.03e5T^{2} \)
53 \( 1 + 278.T + 1.48e5T^{2} \)
59 \( 1 - 257.T + 2.05e5T^{2} \)
61 \( 1 + 489.T + 2.26e5T^{2} \)
67 \( 1 - 772.T + 3.00e5T^{2} \)
71 \( 1 - 536.T + 3.57e5T^{2} \)
73 \( 1 + 65.5T + 3.89e5T^{2} \)
79 \( 1 + 749.T + 4.93e5T^{2} \)
83 \( 1 - 1.26e3T + 5.71e5T^{2} \)
89 \( 1 + 1.32e3T + 7.04e5T^{2} \)
97 \( 1 + 32.9T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.743050330787032800364311651554, −8.024798881901938031021181887621, −6.97868333190490676362477793761, −6.51319642660751826677872206699, −5.67664306302585915424190799861, −4.60019492804469337295226312184, −3.53557814764942724806714926623, −3.27512983482022174398700754904, −1.62317865142806589866639950762, −0.69993005163929511220152804932, 0.69993005163929511220152804932, 1.62317865142806589866639950762, 3.27512983482022174398700754904, 3.53557814764942724806714926623, 4.60019492804469337295226312184, 5.67664306302585915424190799861, 6.51319642660751826677872206699, 6.97868333190490676362477793761, 8.024798881901938031021181887621, 8.743050330787032800364311651554

Graph of the $Z$-function along the critical line