Properties

Label 2-2160-1.1-c3-0-30
Degree $2$
Conductor $2160$
Sign $1$
Analytic cond. $127.444$
Root an. cond. $11.2891$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5·5-s + 22.8·7-s − 11.0·11-s − 11.6·13-s + 10.0·17-s − 117.·19-s − 172.·23-s + 25·25-s + 178.·29-s − 140.·31-s + 114.·35-s + 250.·37-s + 361.·41-s + 360.·43-s + 600.·47-s + 181.·49-s + 201.·53-s − 55.4·55-s − 415.·59-s − 54.6·61-s − 58.1·65-s + 531.·67-s + 933.·71-s − 560.·73-s − 253.·77-s − 810.·79-s − 538.·83-s + ⋯
L(s)  = 1  + 0.447·5-s + 1.23·7-s − 0.303·11-s − 0.248·13-s + 0.143·17-s − 1.42·19-s − 1.56·23-s + 0.200·25-s + 1.14·29-s − 0.814·31-s + 0.552·35-s + 1.11·37-s + 1.37·41-s + 1.27·43-s + 1.86·47-s + 0.528·49-s + 0.521·53-s − 0.135·55-s − 0.917·59-s − 0.114·61-s − 0.111·65-s + 0.968·67-s + 1.56·71-s − 0.898·73-s − 0.375·77-s − 1.15·79-s − 0.711·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2160 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2160 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2160\)    =    \(2^{4} \cdot 3^{3} \cdot 5\)
Sign: $1$
Analytic conductor: \(127.444\)
Root analytic conductor: \(11.2891\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2160,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(2.668835434\)
\(L(\frac12)\) \(\approx\) \(2.668835434\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 - 5T \)
good7 \( 1 - 22.8T + 343T^{2} \)
11 \( 1 + 11.0T + 1.33e3T^{2} \)
13 \( 1 + 11.6T + 2.19e3T^{2} \)
17 \( 1 - 10.0T + 4.91e3T^{2} \)
19 \( 1 + 117.T + 6.85e3T^{2} \)
23 \( 1 + 172.T + 1.21e4T^{2} \)
29 \( 1 - 178.T + 2.43e4T^{2} \)
31 \( 1 + 140.T + 2.97e4T^{2} \)
37 \( 1 - 250.T + 5.06e4T^{2} \)
41 \( 1 - 361.T + 6.89e4T^{2} \)
43 \( 1 - 360.T + 7.95e4T^{2} \)
47 \( 1 - 600.T + 1.03e5T^{2} \)
53 \( 1 - 201.T + 1.48e5T^{2} \)
59 \( 1 + 415.T + 2.05e5T^{2} \)
61 \( 1 + 54.6T + 2.26e5T^{2} \)
67 \( 1 - 531.T + 3.00e5T^{2} \)
71 \( 1 - 933.T + 3.57e5T^{2} \)
73 \( 1 + 560.T + 3.89e5T^{2} \)
79 \( 1 + 810.T + 4.93e5T^{2} \)
83 \( 1 + 538.T + 5.71e5T^{2} \)
89 \( 1 - 686.T + 7.04e5T^{2} \)
97 \( 1 - 714.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.633606732102824725436919502426, −7.970627532516751309328718942869, −7.34113304741699661952286298249, −6.18203592365138161002893201068, −5.65410904067746767851249594977, −4.59140837163798799139414204620, −4.08685069583425455750513953733, −2.53931372010116937766953503282, −1.95647970699696974840266089680, −0.74086958051538614133509596372, 0.74086958051538614133509596372, 1.95647970699696974840266089680, 2.53931372010116937766953503282, 4.08685069583425455750513953733, 4.59140837163798799139414204620, 5.65410904067746767851249594977, 6.18203592365138161002893201068, 7.34113304741699661952286298249, 7.970627532516751309328718942869, 8.633606732102824725436919502426

Graph of the $Z$-function along the critical line