L(s) = 1 | − 5·5-s + 22·7-s + 12·11-s + 38·13-s − 105·17-s + 157·19-s + 117·23-s + 25·25-s + 66·29-s + 25·31-s − 110·35-s + 314·37-s − 504·41-s − 380·43-s + 252·47-s + 141·49-s + 3·53-s − 60·55-s + 318·59-s + 293·61-s − 190·65-s + 322·67-s + 120·71-s + 44·73-s + 264·77-s − 917·79-s − 309·83-s + ⋯ |
L(s) = 1 | − 0.447·5-s + 1.18·7-s + 0.328·11-s + 0.810·13-s − 1.49·17-s + 1.89·19-s + 1.06·23-s + 1/5·25-s + 0.422·29-s + 0.144·31-s − 0.531·35-s + 1.39·37-s − 1.91·41-s − 1.34·43-s + 0.782·47-s + 0.411·49-s + 0.00777·53-s − 0.147·55-s + 0.701·59-s + 0.614·61-s − 0.362·65-s + 0.587·67-s + 0.200·71-s + 0.0705·73-s + 0.390·77-s − 1.30·79-s − 0.408·83-s + ⋯ |
Λ(s)=(=(2160s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(2160s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
2.746351556 |
L(21) |
≈ |
2.746351556 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 5 | 1+pT |
good | 7 | 1−22T+p3T2 |
| 11 | 1−12T+p3T2 |
| 13 | 1−38T+p3T2 |
| 17 | 1+105T+p3T2 |
| 19 | 1−157T+p3T2 |
| 23 | 1−117T+p3T2 |
| 29 | 1−66T+p3T2 |
| 31 | 1−25T+p3T2 |
| 37 | 1−314T+p3T2 |
| 41 | 1+504T+p3T2 |
| 43 | 1+380T+p3T2 |
| 47 | 1−252T+p3T2 |
| 53 | 1−3T+p3T2 |
| 59 | 1−318T+p3T2 |
| 61 | 1−293T+p3T2 |
| 67 | 1−322T+p3T2 |
| 71 | 1−120T+p3T2 |
| 73 | 1−44T+p3T2 |
| 79 | 1+917T+p3T2 |
| 83 | 1+309T+p3T2 |
| 89 | 1−1272T+p3T2 |
| 97 | 1−1328T+p3T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.601591150513406660143105609660, −8.073984795241922239785229248594, −7.16796282077513354834222171152, −6.53246131072541104879264250647, −5.34185839777789793165124437247, −4.76298043839384812564481024238, −3.87223186896078592539082835511, −2.90333938493657302144748009078, −1.65853882783165728899243122584, −0.805261026022207019403575232192,
0.805261026022207019403575232192, 1.65853882783165728899243122584, 2.90333938493657302144748009078, 3.87223186896078592539082835511, 4.76298043839384812564481024238, 5.34185839777789793165124437247, 6.53246131072541104879264250647, 7.16796282077513354834222171152, 8.073984795241922239785229248594, 8.601591150513406660143105609660