Properties

Label 2-2160-1.1-c3-0-44
Degree 22
Conductor 21602160
Sign 11
Analytic cond. 127.444127.444
Root an. cond. 11.289111.2891
Motivic weight 33
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank 00

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5·5-s + 22·7-s − 12·11-s + 38·13-s + 105·17-s + 157·19-s − 117·23-s + 25·25-s − 66·29-s + 25·31-s + 110·35-s + 314·37-s + 504·41-s − 380·43-s − 252·47-s + 141·49-s − 3·53-s − 60·55-s − 318·59-s + 293·61-s + 190·65-s + 322·67-s − 120·71-s + 44·73-s − 264·77-s − 917·79-s + 309·83-s + ⋯
L(s)  = 1  + 0.447·5-s + 1.18·7-s − 0.328·11-s + 0.810·13-s + 1.49·17-s + 1.89·19-s − 1.06·23-s + 1/5·25-s − 0.422·29-s + 0.144·31-s + 0.531·35-s + 1.39·37-s + 1.91·41-s − 1.34·43-s − 0.782·47-s + 0.411·49-s − 0.00777·53-s − 0.147·55-s − 0.701·59-s + 0.614·61-s + 0.362·65-s + 0.587·67-s − 0.200·71-s + 0.0705·73-s − 0.390·77-s − 1.30·79-s + 0.408·83-s + ⋯

Functional equation

Λ(s)=(2160s/2ΓC(s)L(s)=(Λ(4s)\begin{aligned}\Lambda(s)=\mathstrut & 2160 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}
Λ(s)=(2160s/2ΓC(s+3/2)L(s)=(Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 2160 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 21602160    =    243352^{4} \cdot 3^{3} \cdot 5
Sign: 11
Analytic conductor: 127.444127.444
Root analytic conductor: 11.289111.2891
Motivic weight: 33
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: 00
Selberg data: (2, 2160, ( :3/2), 1)(2,\ 2160,\ (\ :3/2),\ 1)

Particular Values

L(2)L(2) \approx 3.5358991163.535899116
L(12)L(\frac12) \approx 3.5358991163.535899116
L(52)L(\frac{5}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1 1
3 1 1
5 1pT 1 - p T
good7 122T+p3T2 1 - 22 T + p^{3} T^{2}
11 1+12T+p3T2 1 + 12 T + p^{3} T^{2}
13 138T+p3T2 1 - 38 T + p^{3} T^{2}
17 1105T+p3T2 1 - 105 T + p^{3} T^{2}
19 1157T+p3T2 1 - 157 T + p^{3} T^{2}
23 1+117T+p3T2 1 + 117 T + p^{3} T^{2}
29 1+66T+p3T2 1 + 66 T + p^{3} T^{2}
31 125T+p3T2 1 - 25 T + p^{3} T^{2}
37 1314T+p3T2 1 - 314 T + p^{3} T^{2}
41 1504T+p3T2 1 - 504 T + p^{3} T^{2}
43 1+380T+p3T2 1 + 380 T + p^{3} T^{2}
47 1+252T+p3T2 1 + 252 T + p^{3} T^{2}
53 1+3T+p3T2 1 + 3 T + p^{3} T^{2}
59 1+318T+p3T2 1 + 318 T + p^{3} T^{2}
61 1293T+p3T2 1 - 293 T + p^{3} T^{2}
67 1322T+p3T2 1 - 322 T + p^{3} T^{2}
71 1+120T+p3T2 1 + 120 T + p^{3} T^{2}
73 144T+p3T2 1 - 44 T + p^{3} T^{2}
79 1+917T+p3T2 1 + 917 T + p^{3} T^{2}
83 1309T+p3T2 1 - 309 T + p^{3} T^{2}
89 1+1272T+p3T2 1 + 1272 T + p^{3} T^{2}
97 11328T+p3T2 1 - 1328 T + p^{3} T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−8.600224127229223504736382379721, −7.82717285630202922929664470569, −7.50239371313490625592441508240, −6.14223266970085526524793455680, −5.55887653795517989118154070915, −4.86109668270508664550614353224, −3.78582226702215965501330683334, −2.84500460654417303921612111355, −1.63496497663678019117224170964, −0.944946556762391867027290063342, 0.944946556762391867027290063342, 1.63496497663678019117224170964, 2.84500460654417303921612111355, 3.78582226702215965501330683334, 4.86109668270508664550614353224, 5.55887653795517989118154070915, 6.14223266970085526524793455680, 7.50239371313490625592441508240, 7.82717285630202922929664470569, 8.600224127229223504736382379721

Graph of the ZZ-function along the critical line