L(s) = 1 | + 5·5-s + 34.6·7-s + 23.2·11-s + 60.0·13-s − 19.6·17-s + 10.2·19-s + 79.7·23-s + 25·25-s − 110.·29-s + 42.5·31-s + 173.·35-s + 308.·37-s + 106.·41-s + 467.·43-s + 37.7·47-s + 858.·49-s + 568.·53-s + 116.·55-s − 666.·59-s − 862.·61-s + 300.·65-s − 547.·67-s − 761.·71-s − 216.·73-s + 805.·77-s − 258.·79-s − 903.·83-s + ⋯ |
L(s) = 1 | + 0.447·5-s + 1.87·7-s + 0.636·11-s + 1.28·13-s − 0.280·17-s + 0.123·19-s + 0.723·23-s + 0.200·25-s − 0.709·29-s + 0.246·31-s + 0.837·35-s + 1.37·37-s + 0.407·41-s + 1.65·43-s + 0.117·47-s + 2.50·49-s + 1.47·53-s + 0.284·55-s − 1.47·59-s − 1.80·61-s + 0.573·65-s − 0.997·67-s − 1.27·71-s − 0.347·73-s + 1.19·77-s − 0.368·79-s − 1.19·83-s + ⋯ |
Λ(s)=(=(2160s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(2160s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
4.020273908 |
L(21) |
≈ |
4.020273908 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 5 | 1−5T |
good | 7 | 1−34.6T+343T2 |
| 11 | 1−23.2T+1.33e3T2 |
| 13 | 1−60.0T+2.19e3T2 |
| 17 | 1+19.6T+4.91e3T2 |
| 19 | 1−10.2T+6.85e3T2 |
| 23 | 1−79.7T+1.21e4T2 |
| 29 | 1+110.T+2.43e4T2 |
| 31 | 1−42.5T+2.97e4T2 |
| 37 | 1−308.T+5.06e4T2 |
| 41 | 1−106.T+6.89e4T2 |
| 43 | 1−467.T+7.95e4T2 |
| 47 | 1−37.7T+1.03e5T2 |
| 53 | 1−568.T+1.48e5T2 |
| 59 | 1+666.T+2.05e5T2 |
| 61 | 1+862.T+2.26e5T2 |
| 67 | 1+547.T+3.00e5T2 |
| 71 | 1+761.T+3.57e5T2 |
| 73 | 1+216.T+3.89e5T2 |
| 79 | 1+258.T+4.93e5T2 |
| 83 | 1+903.T+5.71e5T2 |
| 89 | 1−1.26e3T+7.04e5T2 |
| 97 | 1−617.T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.955621719697950988937508159257, −7.905599923538882828231063251433, −7.35988822784565074292177760372, −6.18797086675618530305834167098, −5.63471595729629378866781393814, −4.60738949418755871802913163234, −4.05420387706969139084496259359, −2.71282777438757283590115649406, −1.60026692718911216432123797919, −1.04705231529672536272627922277,
1.04705231529672536272627922277, 1.60026692718911216432123797919, 2.71282777438757283590115649406, 4.05420387706969139084496259359, 4.60738949418755871802913163234, 5.63471595729629378866781393814, 6.18797086675618530305834167098, 7.35988822784565074292177760372, 7.905599923538882828231063251433, 8.955621719697950988937508159257