Properties

Label 2-2160-1.1-c3-0-51
Degree $2$
Conductor $2160$
Sign $1$
Analytic cond. $127.444$
Root an. cond. $11.2891$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5·5-s + 34.6·7-s + 23.2·11-s + 60.0·13-s − 19.6·17-s + 10.2·19-s + 79.7·23-s + 25·25-s − 110.·29-s + 42.5·31-s + 173.·35-s + 308.·37-s + 106.·41-s + 467.·43-s + 37.7·47-s + 858.·49-s + 568.·53-s + 116.·55-s − 666.·59-s − 862.·61-s + 300.·65-s − 547.·67-s − 761.·71-s − 216.·73-s + 805.·77-s − 258.·79-s − 903.·83-s + ⋯
L(s)  = 1  + 0.447·5-s + 1.87·7-s + 0.636·11-s + 1.28·13-s − 0.280·17-s + 0.123·19-s + 0.723·23-s + 0.200·25-s − 0.709·29-s + 0.246·31-s + 0.837·35-s + 1.37·37-s + 0.407·41-s + 1.65·43-s + 0.117·47-s + 2.50·49-s + 1.47·53-s + 0.284·55-s − 1.47·59-s − 1.80·61-s + 0.573·65-s − 0.997·67-s − 1.27·71-s − 0.347·73-s + 1.19·77-s − 0.368·79-s − 1.19·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2160 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2160 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2160\)    =    \(2^{4} \cdot 3^{3} \cdot 5\)
Sign: $1$
Analytic conductor: \(127.444\)
Root analytic conductor: \(11.2891\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2160,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(4.020273908\)
\(L(\frac12)\) \(\approx\) \(4.020273908\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 - 5T \)
good7 \( 1 - 34.6T + 343T^{2} \)
11 \( 1 - 23.2T + 1.33e3T^{2} \)
13 \( 1 - 60.0T + 2.19e3T^{2} \)
17 \( 1 + 19.6T + 4.91e3T^{2} \)
19 \( 1 - 10.2T + 6.85e3T^{2} \)
23 \( 1 - 79.7T + 1.21e4T^{2} \)
29 \( 1 + 110.T + 2.43e4T^{2} \)
31 \( 1 - 42.5T + 2.97e4T^{2} \)
37 \( 1 - 308.T + 5.06e4T^{2} \)
41 \( 1 - 106.T + 6.89e4T^{2} \)
43 \( 1 - 467.T + 7.95e4T^{2} \)
47 \( 1 - 37.7T + 1.03e5T^{2} \)
53 \( 1 - 568.T + 1.48e5T^{2} \)
59 \( 1 + 666.T + 2.05e5T^{2} \)
61 \( 1 + 862.T + 2.26e5T^{2} \)
67 \( 1 + 547.T + 3.00e5T^{2} \)
71 \( 1 + 761.T + 3.57e5T^{2} \)
73 \( 1 + 216.T + 3.89e5T^{2} \)
79 \( 1 + 258.T + 4.93e5T^{2} \)
83 \( 1 + 903.T + 5.71e5T^{2} \)
89 \( 1 - 1.26e3T + 7.04e5T^{2} \)
97 \( 1 - 617.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.955621719697950988937508159257, −7.905599923538882828231063251433, −7.35988822784565074292177760372, −6.18797086675618530305834167098, −5.63471595729629378866781393814, −4.60738949418755871802913163234, −4.05420387706969139084496259359, −2.71282777438757283590115649406, −1.60026692718911216432123797919, −1.04705231529672536272627922277, 1.04705231529672536272627922277, 1.60026692718911216432123797919, 2.71282777438757283590115649406, 4.05420387706969139084496259359, 4.60738949418755871802913163234, 5.63471595729629378866781393814, 6.18797086675618530305834167098, 7.35988822784565074292177760372, 7.905599923538882828231063251433, 8.955621719697950988937508159257

Graph of the $Z$-function along the critical line