L(s) = 1 | + 5-s − 17-s + 19-s + 23-s + 25-s + 31-s − 2·47-s + 49-s − 53-s − 61-s + 79-s + 83-s − 85-s + 95-s − 2·107-s − 109-s + 2·113-s + 115-s + ⋯ |
L(s) = 1 | + 5-s − 17-s + 19-s + 23-s + 25-s + 31-s − 2·47-s + 49-s − 53-s − 61-s + 79-s + 83-s − 85-s + 95-s − 2·107-s − 109-s + 2·113-s + 115-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2160 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2160 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.430607846\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.430607846\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 - T \) |
good | 7 | \( ( 1 - T )( 1 + T ) \) |
| 11 | \( ( 1 - T )( 1 + T ) \) |
| 13 | \( ( 1 - T )( 1 + T ) \) |
| 17 | \( 1 + T + T^{2} \) |
| 19 | \( 1 - T + T^{2} \) |
| 23 | \( 1 - T + T^{2} \) |
| 29 | \( ( 1 - T )( 1 + T ) \) |
| 31 | \( 1 - T + T^{2} \) |
| 37 | \( ( 1 - T )( 1 + T ) \) |
| 41 | \( ( 1 - T )( 1 + T ) \) |
| 43 | \( ( 1 - T )( 1 + T ) \) |
| 47 | \( ( 1 + T )^{2} \) |
| 53 | \( 1 + T + T^{2} \) |
| 59 | \( ( 1 - T )( 1 + T ) \) |
| 61 | \( 1 + T + T^{2} \) |
| 67 | \( ( 1 - T )( 1 + T ) \) |
| 71 | \( ( 1 - T )( 1 + T ) \) |
| 73 | \( ( 1 - T )( 1 + T ) \) |
| 79 | \( 1 - T + T^{2} \) |
| 83 | \( 1 - T + T^{2} \) |
| 89 | \( ( 1 - T )( 1 + T ) \) |
| 97 | \( ( 1 - T )( 1 + T ) \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.314755982477054221143082758028, −8.646261674320724763652826765045, −7.70301884847421054867270243950, −6.76350400436940707631919213332, −6.22901279508452714497602617344, −5.22337244520440055754597376928, −4.64098926891498131804169404996, −3.31321653895451706956557173084, −2.44418642050525191040624672666, −1.30675294302360740766815383931,
1.30675294302360740766815383931, 2.44418642050525191040624672666, 3.31321653895451706956557173084, 4.64098926891498131804169404996, 5.22337244520440055754597376928, 6.22901279508452714497602617344, 6.76350400436940707631919213332, 7.70301884847421054867270243950, 8.646261674320724763652826765045, 9.314755982477054221143082758028