L(s) = 1 | + (0.707 − 0.707i)5-s + i·7-s − 1.41i·11-s − i·13-s − 19-s + 1.41·23-s − 1.00i·25-s − 1.41i·29-s + (0.707 + 0.707i)35-s + i·37-s + 1.41i·41-s + 1.41·53-s + (−1.00 − 1.00i)55-s − 61-s + (−0.707 − 0.707i)65-s + ⋯ |
L(s) = 1 | + (0.707 − 0.707i)5-s + i·7-s − 1.41i·11-s − i·13-s − 19-s + 1.41·23-s − 1.00i·25-s − 1.41i·29-s + (0.707 + 0.707i)35-s + i·37-s + 1.41i·41-s + 1.41·53-s + (−1.00 − 1.00i)55-s − 61-s + (−0.707 − 0.707i)65-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2160 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.707 + 0.707i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2160 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.707 + 0.707i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.307766734\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.307766734\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (-0.707 + 0.707i)T \) |
good | 7 | \( 1 - iT - T^{2} \) |
| 11 | \( 1 + 1.41iT - T^{2} \) |
| 13 | \( 1 + iT - T^{2} \) |
| 17 | \( 1 + T^{2} \) |
| 19 | \( 1 + T + T^{2} \) |
| 23 | \( 1 - 1.41T + T^{2} \) |
| 29 | \( 1 + 1.41iT - T^{2} \) |
| 31 | \( 1 + T^{2} \) |
| 37 | \( 1 - iT - T^{2} \) |
| 41 | \( 1 - 1.41iT - T^{2} \) |
| 43 | \( 1 - T^{2} \) |
| 47 | \( 1 + T^{2} \) |
| 53 | \( 1 - 1.41T + T^{2} \) |
| 59 | \( 1 - T^{2} \) |
| 61 | \( 1 + T + T^{2} \) |
| 67 | \( 1 - iT - T^{2} \) |
| 71 | \( 1 + 1.41iT - T^{2} \) |
| 73 | \( 1 - iT - T^{2} \) |
| 79 | \( 1 - T + T^{2} \) |
| 83 | \( 1 + 1.41T + T^{2} \) |
| 89 | \( 1 - T^{2} \) |
| 97 | \( 1 - iT - T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.981005944189793950412343155257, −8.527560263549555993759251617078, −7.937389993510061633114299284302, −6.54434918050619773763203943153, −5.89068762861157760291461271730, −5.38412833681878083567992811931, −4.46596650223500158213644188886, −3.13525931027800871266299781335, −2.40825720303266386130029002400, −0.994737123430730438835313106031,
1.58062512804029687945387432507, 2.43612157846312220841865952203, 3.68493575279538663600998276755, 4.47748150253517346951882482002, 5.33888141925683638682176174584, 6.50347751916732354917210509194, 7.09867980042917947804189051546, 7.38168266003385136569102654178, 8.859292724376237293166252724572, 9.308065633744256526859794573429