L(s) = 1 | + (0.707 − 0.707i)5-s + i·7-s − 1.41i·11-s − i·13-s − 19-s + 1.41·23-s − 1.00i·25-s − 1.41i·29-s + (0.707 + 0.707i)35-s + i·37-s + 1.41i·41-s + 1.41·53-s + (−1.00 − 1.00i)55-s − 61-s + (−0.707 − 0.707i)65-s + ⋯ |
L(s) = 1 | + (0.707 − 0.707i)5-s + i·7-s − 1.41i·11-s − i·13-s − 19-s + 1.41·23-s − 1.00i·25-s − 1.41i·29-s + (0.707 + 0.707i)35-s + i·37-s + 1.41i·41-s + 1.41·53-s + (−1.00 − 1.00i)55-s − 61-s + (−0.707 − 0.707i)65-s + ⋯ |
Λ(s)=(=(2160s/2ΓC(s)L(s)(0.707+0.707i)Λ(1−s)
Λ(s)=(=(2160s/2ΓC(s)L(s)(0.707+0.707i)Λ(1−s)
Degree: |
2 |
Conductor: |
2160
= 24⋅33⋅5
|
Sign: |
0.707+0.707i
|
Analytic conductor: |
1.07798 |
Root analytic conductor: |
1.03825 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2160(1889,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2160, ( :0), 0.707+0.707i)
|
Particular Values
L(21) |
≈ |
1.307766734 |
L(21) |
≈ |
1.307766734 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 5 | 1+(−0.707+0.707i)T |
good | 7 | 1−iT−T2 |
| 11 | 1+1.41iT−T2 |
| 13 | 1+iT−T2 |
| 17 | 1+T2 |
| 19 | 1+T+T2 |
| 23 | 1−1.41T+T2 |
| 29 | 1+1.41iT−T2 |
| 31 | 1+T2 |
| 37 | 1−iT−T2 |
| 41 | 1−1.41iT−T2 |
| 43 | 1−T2 |
| 47 | 1+T2 |
| 53 | 1−1.41T+T2 |
| 59 | 1−T2 |
| 61 | 1+T+T2 |
| 67 | 1−iT−T2 |
| 71 | 1+1.41iT−T2 |
| 73 | 1−iT−T2 |
| 79 | 1−T+T2 |
| 83 | 1+1.41T+T2 |
| 89 | 1−T2 |
| 97 | 1−iT−T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.981005944189793950412343155257, −8.527560263549555993759251617078, −7.937389993510061633114299284302, −6.54434918050619773763203943153, −5.89068762861157760291461271730, −5.38412833681878083567992811931, −4.46596650223500158213644188886, −3.13525931027800871266299781335, −2.40825720303266386130029002400, −0.994737123430730438835313106031,
1.58062512804029687945387432507, 2.43612157846312220841865952203, 3.68493575279538663600998276755, 4.47748150253517346951882482002, 5.33888141925683638682176174584, 6.50347751916732354917210509194, 7.09867980042917947804189051546, 7.38168266003385136569102654178, 8.859292724376237293166252724572, 9.308065633744256526859794573429