L(s) = 1 | + (2.12 + 4.52i)5-s + 4.02i·7-s + 11.5i·11-s + 13.5i·13-s − 4.76·17-s − 8.28·19-s − 33.4·23-s + (−15.9 + 19.2i)25-s − 21.3i·29-s − 51.2·31-s + (−18.2 + 8.54i)35-s − 1.30i·37-s + 0.277i·41-s − 5.16i·43-s + 49.9·47-s + ⋯ |
L(s) = 1 | + (0.424 + 0.905i)5-s + 0.574i·7-s + 1.05i·11-s + 1.04i·13-s − 0.280·17-s − 0.435·19-s − 1.45·23-s + (−0.638 + 0.769i)25-s − 0.735i·29-s − 1.65·31-s + (−0.520 + 0.244i)35-s − 0.0351i·37-s + 0.00676i·41-s − 0.120i·43-s + 1.06·47-s + ⋯ |
Λ(s)=(=(2160s/2ΓC(s)L(s)(−0.905+0.424i)Λ(3−s)
Λ(s)=(=(2160s/2ΓC(s+1)L(s)(−0.905+0.424i)Λ(1−s)
Degree: |
2 |
Conductor: |
2160
= 24⋅33⋅5
|
Sign: |
−0.905+0.424i
|
Analytic conductor: |
58.8557 |
Root analytic conductor: |
7.67174 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2160(1889,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2160, ( :1), −0.905+0.424i)
|
Particular Values
L(23) |
≈ |
0.8121572028 |
L(21) |
≈ |
0.8121572028 |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 5 | 1+(−2.12−4.52i)T |
good | 7 | 1−4.02iT−49T2 |
| 11 | 1−11.5iT−121T2 |
| 13 | 1−13.5iT−169T2 |
| 17 | 1+4.76T+289T2 |
| 19 | 1+8.28T+361T2 |
| 23 | 1+33.4T+529T2 |
| 29 | 1+21.3iT−841T2 |
| 31 | 1+51.2T+961T2 |
| 37 | 1+1.30iT−1.36e3T2 |
| 41 | 1−0.277iT−1.68e3T2 |
| 43 | 1+5.16iT−1.84e3T2 |
| 47 | 1−49.9T+2.20e3T2 |
| 53 | 1+14.5T+2.80e3T2 |
| 59 | 1+56.4iT−3.48e3T2 |
| 61 | 1−108.T+3.72e3T2 |
| 67 | 1+61.7iT−4.48e3T2 |
| 71 | 1+63.6iT−5.04e3T2 |
| 73 | 1+3.03iT−5.32e3T2 |
| 79 | 1+24.1T+6.24e3T2 |
| 83 | 1+54.1T+6.88e3T2 |
| 89 | 1−19.2iT−7.92e3T2 |
| 97 | 1−179.iT−9.40e3T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.468942139186550315596957911535, −8.664066791772652052125381359855, −7.62793865620666754135447029277, −6.97615306266722119683161832796, −6.24933430482178629646097186096, −5.53153331500417462745243457582, −4.41017376121900751276880097266, −3.64451358214034109281132432799, −2.20766979950709360168945402489, −2.00528621537479012284813739118,
0.19687226707951845148685151685, 1.17360126126974376797046651840, 2.36959833930904987349083841007, 3.60668067750953431154251723023, 4.30898883920631730744498620731, 5.54259075627942610497419023492, 5.75037831904661811218482381715, 6.91619137693623628867058378812, 7.83124468597332589317321755004, 8.509219732143335628058264221750