L(s) = 1 | + (4.26 − 2.61i)5-s − 5.45i·7-s + 7.38i·11-s + 15.9i·13-s + 15.3·17-s − 2.76·19-s + 3.49·23-s + (11.3 − 22.2i)25-s + 43.6i·29-s − 1.13·31-s + (−14.2 − 23.2i)35-s + 47.5i·37-s + 6.64i·41-s + 23.1i·43-s − 39.6·47-s + ⋯ |
L(s) = 1 | + (0.852 − 0.522i)5-s − 0.779i·7-s + 0.670i·11-s + 1.23i·13-s + 0.900·17-s − 0.145·19-s + 0.151·23-s + (0.453 − 0.891i)25-s + 1.50i·29-s − 0.0365·31-s + (−0.407 − 0.664i)35-s + 1.28i·37-s + 0.162i·41-s + 0.539i·43-s − 0.844·47-s + ⋯ |
Λ(s)=(=(2160s/2ΓC(s)L(s)(0.852−0.522i)Λ(3−s)
Λ(s)=(=(2160s/2ΓC(s+1)L(s)(0.852−0.522i)Λ(1−s)
Degree: |
2 |
Conductor: |
2160
= 24⋅33⋅5
|
Sign: |
0.852−0.522i
|
Analytic conductor: |
58.8557 |
Root analytic conductor: |
7.67174 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2160(1889,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2160, ( :1), 0.852−0.522i)
|
Particular Values
L(23) |
≈ |
2.394092375 |
L(21) |
≈ |
2.394092375 |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 5 | 1+(−4.26+2.61i)T |
good | 7 | 1+5.45iT−49T2 |
| 11 | 1−7.38iT−121T2 |
| 13 | 1−15.9iT−169T2 |
| 17 | 1−15.3T+289T2 |
| 19 | 1+2.76T+361T2 |
| 23 | 1−3.49T+529T2 |
| 29 | 1−43.6iT−841T2 |
| 31 | 1+1.13T+961T2 |
| 37 | 1−47.5iT−1.36e3T2 |
| 41 | 1−6.64iT−1.68e3T2 |
| 43 | 1−23.1iT−1.84e3T2 |
| 47 | 1+39.6T+2.20e3T2 |
| 53 | 1−52.1T+2.80e3T2 |
| 59 | 1−49.5iT−3.48e3T2 |
| 61 | 1+39.7T+3.72e3T2 |
| 67 | 1−71.0iT−4.48e3T2 |
| 71 | 1+85.3iT−5.04e3T2 |
| 73 | 1−28.9iT−5.32e3T2 |
| 79 | 1−90.7T+6.24e3T2 |
| 83 | 1+97.6T+6.88e3T2 |
| 89 | 1−121.iT−7.92e3T2 |
| 97 | 1+77.9iT−9.40e3T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.036544475211408717170809699318, −8.295614401106144430124580457806, −7.23284093778763854323291753290, −6.73969529694860529884349136775, −5.78653984033138311192629281259, −4.86518756901221003654950662431, −4.27230391236528859812479265031, −3.10882312592180583334986222989, −1.84605986992610680855436365983, −1.11160069731174358898775374359,
0.64729526827256238641799407595, 2.06060749311273513694059807903, 2.86888498102608667028837144881, 3.67824895067183570530447981452, 5.13409825174955149010391603215, 5.75722889788412244984041538396, 6.19867094093026955895852058458, 7.32836745476551530406538733576, 8.078195247171008443799194582110, 8.859541455912937921542051911372