L(s) = 1 | + (−4.03 − 2.95i)5-s − 7.07i·7-s + 9.43i·11-s + 6.86i·13-s + 6.05·17-s + 14.3·19-s − 11.4·23-s + (7.55 + 23.8i)25-s − 21.2i·29-s + 8.47·31-s + (−20.8 + 28.5i)35-s − 22.0i·37-s + 58.8i·41-s + 49.4i·43-s − 49.9·47-s + ⋯ |
L(s) = 1 | + (−0.806 − 0.590i)5-s − 1.01i·7-s + 0.857i·11-s + 0.528i·13-s + 0.356·17-s + 0.754·19-s − 0.499·23-s + (0.302 + 0.953i)25-s − 0.731i·29-s + 0.273·31-s + (−0.596 + 0.815i)35-s − 0.595i·37-s + 1.43i·41-s + 1.14i·43-s − 1.06·47-s + ⋯ |
Λ(s)=(=(2160s/2ΓC(s)L(s)(0.806+0.590i)Λ(3−s)
Λ(s)=(=(2160s/2ΓC(s+1)L(s)(0.806+0.590i)Λ(1−s)
Degree: |
2 |
Conductor: |
2160
= 24⋅33⋅5
|
Sign: |
0.806+0.590i
|
Analytic conductor: |
58.8557 |
Root analytic conductor: |
7.67174 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2160(1889,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2160, ( :1), 0.806+0.590i)
|
Particular Values
L(23) |
≈ |
1.576109934 |
L(21) |
≈ |
1.576109934 |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 5 | 1+(4.03+2.95i)T |
good | 7 | 1+7.07iT−49T2 |
| 11 | 1−9.43iT−121T2 |
| 13 | 1−6.86iT−169T2 |
| 17 | 1−6.05T+289T2 |
| 19 | 1−14.3T+361T2 |
| 23 | 1+11.4T+529T2 |
| 29 | 1+21.2iT−841T2 |
| 31 | 1−8.47T+961T2 |
| 37 | 1+22.0iT−1.36e3T2 |
| 41 | 1−58.8iT−1.68e3T2 |
| 43 | 1−49.4iT−1.84e3T2 |
| 47 | 1+49.9T+2.20e3T2 |
| 53 | 1−69.7T+2.80e3T2 |
| 59 | 1−50.0iT−3.48e3T2 |
| 61 | 1−92.9T+3.72e3T2 |
| 67 | 1+42.1iT−4.48e3T2 |
| 71 | 1−84.2iT−5.04e3T2 |
| 73 | 1+108.iT−5.32e3T2 |
| 79 | 1+23.2T+6.24e3T2 |
| 83 | 1+55.7T+6.88e3T2 |
| 89 | 1+73.1iT−7.92e3T2 |
| 97 | 1+69.4iT−9.40e3T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.739976949290723049232254117541, −7.88808686944477107569743174457, −7.40963615252807066593592048371, −6.67274896704666854417022919805, −5.54083473880432191463416211298, −4.49693534520114803543079063565, −4.15932536083997618103564692248, −3.09926694274561557231611334517, −1.65378008342917585362840011614, −0.62611284965658869552345471706,
0.71118085802800215924709131197, 2.29908172661763065388746246672, 3.19957484482877561748838747235, 3.82947848394493303875506986097, 5.18028230131197651955438396623, 5.71628292485103925466863016434, 6.68576327157238005030849313294, 7.45050410339879816326074856229, 8.341248841939898452455308136920, 8.694884605917312469898442154010