L(s) = 1 | + (−0.707 + 0.707i)2-s − 1.00i·4-s + (−0.707 + 0.707i)5-s + (0.707 + 0.707i)8-s − 1.00i·10-s + (−0.707 − 0.707i)11-s + 13-s − 1.00·16-s + (0.707 + 0.707i)17-s + (0.707 + 0.707i)20-s + 1.00·22-s + (0.707 − 0.707i)23-s − 1.00i·25-s + (−0.707 + 0.707i)26-s + (−0.707 + 0.707i)29-s + ⋯ |
L(s) = 1 | + (−0.707 + 0.707i)2-s − 1.00i·4-s + (−0.707 + 0.707i)5-s + (0.707 + 0.707i)8-s − 1.00i·10-s + (−0.707 − 0.707i)11-s + 13-s − 1.00·16-s + (0.707 + 0.707i)17-s + (0.707 + 0.707i)20-s + 1.00·22-s + (0.707 − 0.707i)23-s − 1.00i·25-s + (−0.707 + 0.707i)26-s + (−0.707 + 0.707i)29-s + ⋯ |
Λ(s)=(=(2160s/2ΓC(s)L(s)(0.160−0.987i)Λ(1−s)
Λ(s)=(=(2160s/2ΓC(s)L(s)(0.160−0.987i)Λ(1−s)
Degree: |
2 |
Conductor: |
2160
= 24⋅33⋅5
|
Sign: |
0.160−0.987i
|
Analytic conductor: |
1.07798 |
Root analytic conductor: |
1.03825 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2160(1403,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2160, ( :0), 0.160−0.987i)
|
Particular Values
L(21) |
≈ |
0.7018935194 |
L(21) |
≈ |
0.7018935194 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.707−0.707i)T |
| 3 | 1 |
| 5 | 1+(0.707−0.707i)T |
good | 7 | 1−iT2 |
| 11 | 1+(0.707+0.707i)T+iT2 |
| 13 | 1−T+T2 |
| 17 | 1+(−0.707−0.707i)T+iT2 |
| 19 | 1−iT2 |
| 23 | 1+(−0.707+0.707i)T−iT2 |
| 29 | 1+(0.707−0.707i)T−iT2 |
| 31 | 1−iT−T2 |
| 37 | 1+T2 |
| 41 | 1−1.41T+T2 |
| 43 | 1−T+T2 |
| 47 | 1+(0.707−0.707i)T−iT2 |
| 53 | 1−1.41T+T2 |
| 59 | 1−iT2 |
| 61 | 1+(1−i)T−iT2 |
| 67 | 1+2T+T2 |
| 71 | 1−T2 |
| 73 | 1−iT2 |
| 79 | 1−T+T2 |
| 83 | 1−1.41T+T2 |
| 89 | 1−T2 |
| 97 | 1+(−1+i)T−iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.109101892281609351663237397370, −8.629834381163140730910205372796, −7.77432679554718394243505944495, −7.36610546865132212138019818895, −6.28804878744290457656649636560, −5.86014901763654521353025591785, −4.75940237151608450439752727147, −3.66466909963963894600455414189, −2.69936718627400046150890702690, −1.11715492894546494497931521665,
0.78519822039765553627000189864, 2.03708726662288201654305360948, 3.22721566942045914690209991482, 4.02217649545060334502972794743, 4.87647789558870307351524115810, 5.87005217889429243749792127137, 7.28861518056447071799652919132, 7.62929089082333278809450056496, 8.377059729341352950321407989913, 9.216113678600207724271230018648