L(s) = 1 | + (−0.707 + 0.707i)2-s − 1.00i·4-s + (−0.707 + 0.707i)5-s + (0.707 + 0.707i)8-s − 1.00i·10-s + (−0.707 − 0.707i)11-s + 13-s − 1.00·16-s + (0.707 + 0.707i)17-s + (0.707 + 0.707i)20-s + 1.00·22-s + (0.707 − 0.707i)23-s − 1.00i·25-s + (−0.707 + 0.707i)26-s + (−0.707 + 0.707i)29-s + ⋯ |
L(s) = 1 | + (−0.707 + 0.707i)2-s − 1.00i·4-s + (−0.707 + 0.707i)5-s + (0.707 + 0.707i)8-s − 1.00i·10-s + (−0.707 − 0.707i)11-s + 13-s − 1.00·16-s + (0.707 + 0.707i)17-s + (0.707 + 0.707i)20-s + 1.00·22-s + (0.707 − 0.707i)23-s − 1.00i·25-s + (−0.707 + 0.707i)26-s + (−0.707 + 0.707i)29-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2160 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.160 - 0.987i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2160 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.160 - 0.987i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.7018935194\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.7018935194\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.707 - 0.707i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (0.707 - 0.707i)T \) |
good | 7 | \( 1 - iT^{2} \) |
| 11 | \( 1 + (0.707 + 0.707i)T + iT^{2} \) |
| 13 | \( 1 - T + T^{2} \) |
| 17 | \( 1 + (-0.707 - 0.707i)T + iT^{2} \) |
| 19 | \( 1 - iT^{2} \) |
| 23 | \( 1 + (-0.707 + 0.707i)T - iT^{2} \) |
| 29 | \( 1 + (0.707 - 0.707i)T - iT^{2} \) |
| 31 | \( 1 - iT - T^{2} \) |
| 37 | \( 1 + T^{2} \) |
| 41 | \( 1 - 1.41T + T^{2} \) |
| 43 | \( 1 - T + T^{2} \) |
| 47 | \( 1 + (0.707 - 0.707i)T - iT^{2} \) |
| 53 | \( 1 - 1.41T + T^{2} \) |
| 59 | \( 1 - iT^{2} \) |
| 61 | \( 1 + (1 - i)T - iT^{2} \) |
| 67 | \( 1 + 2T + T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 - iT^{2} \) |
| 79 | \( 1 - T + T^{2} \) |
| 83 | \( 1 - 1.41T + T^{2} \) |
| 89 | \( 1 - T^{2} \) |
| 97 | \( 1 + (-1 + i)T - iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.109101892281609351663237397370, −8.629834381163140730910205372796, −7.77432679554718394243505944495, −7.36610546865132212138019818895, −6.28804878744290457656649636560, −5.86014901763654521353025591785, −4.75940237151608450439752727147, −3.66466909963963894600455414189, −2.69936718627400046150890702690, −1.11715492894546494497931521665,
0.78519822039765553627000189864, 2.03708726662288201654305360948, 3.22721566942045914690209991482, 4.02217649545060334502972794743, 4.87647789558870307351524115810, 5.87005217889429243749792127137, 7.28861518056447071799652919132, 7.62929089082333278809450056496, 8.377059729341352950321407989913, 9.216113678600207724271230018648