L(s) = 1 | − i·2-s − 4-s + (−0.707 − 0.707i)5-s + 1.41·7-s + i·8-s + (−0.707 + 0.707i)10-s + (0.707 + 0.707i)11-s + (−0.707 + 0.707i)13-s − 1.41i·14-s + 16-s + 17-s + (1 + i)19-s + (0.707 + 0.707i)20-s + (0.707 − 0.707i)22-s − i·23-s + ⋯ |
L(s) = 1 | − i·2-s − 4-s + (−0.707 − 0.707i)5-s + 1.41·7-s + i·8-s + (−0.707 + 0.707i)10-s + (0.707 + 0.707i)11-s + (−0.707 + 0.707i)13-s − 1.41i·14-s + 16-s + 17-s + (1 + i)19-s + (0.707 + 0.707i)20-s + (0.707 − 0.707i)22-s − i·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2160 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.382 + 0.923i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2160 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.382 + 0.923i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.145510677\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.145510677\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + iT \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (0.707 + 0.707i)T \) |
good | 7 | \( 1 - 1.41T + T^{2} \) |
| 11 | \( 1 + (-0.707 - 0.707i)T + iT^{2} \) |
| 13 | \( 1 + (0.707 - 0.707i)T - iT^{2} \) |
| 17 | \( 1 - T + T^{2} \) |
| 19 | \( 1 + (-1 - i)T + iT^{2} \) |
| 23 | \( 1 + iT - T^{2} \) |
| 29 | \( 1 + (0.707 - 0.707i)T - iT^{2} \) |
| 31 | \( 1 - T + T^{2} \) |
| 37 | \( 1 + iT^{2} \) |
| 41 | \( 1 + T^{2} \) |
| 43 | \( 1 + (0.707 + 0.707i)T + iT^{2} \) |
| 47 | \( 1 + T + T^{2} \) |
| 53 | \( 1 + (-1 + i)T - iT^{2} \) |
| 59 | \( 1 + iT^{2} \) |
| 61 | \( 1 + iT^{2} \) |
| 67 | \( 1 - iT^{2} \) |
| 71 | \( 1 + 1.41T + T^{2} \) |
| 73 | \( 1 + T^{2} \) |
| 79 | \( 1 - T + T^{2} \) |
| 83 | \( 1 + iT^{2} \) |
| 89 | \( 1 - 1.41T + T^{2} \) |
| 97 | \( 1 + 1.41iT - T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.208712827412928105776574307956, −8.357204361920694281803123970730, −7.893110472461591857894419402662, −7.04612737900362720761430417232, −5.48244397069680638827321513553, −4.85402560668873980919629450803, −4.26955174502167684606224047712, −3.40287507272241670787520641834, −1.94436799820489478805099549287, −1.23837974652002235132161079893,
1.08810651104447672285511050984, 2.94775284821295146102062262321, 3.81055102782744502031573539565, 4.80282883277623440770059015313, 5.42331498553022058175997726393, 6.34033660299625330191893121681, 7.34909997820923131555634725469, 7.74758212166572025151152236479, 8.270407491189313626747173264076, 9.242832497347617125344601510339