L(s) = 1 | − i·2-s − 4-s + (0.707 + 0.707i)5-s − 1.41·7-s + i·8-s + (0.707 − 0.707i)10-s + (−0.707 − 0.707i)11-s + (0.707 − 0.707i)13-s + 1.41i·14-s + 16-s + 17-s + (1 + i)19-s + (−0.707 − 0.707i)20-s + (−0.707 + 0.707i)22-s − i·23-s + ⋯ |
L(s) = 1 | − i·2-s − 4-s + (0.707 + 0.707i)5-s − 1.41·7-s + i·8-s + (0.707 − 0.707i)10-s + (−0.707 − 0.707i)11-s + (0.707 − 0.707i)13-s + 1.41i·14-s + 16-s + 17-s + (1 + i)19-s + (−0.707 − 0.707i)20-s + (−0.707 + 0.707i)22-s − i·23-s + ⋯ |
Λ(s)=(=(2160s/2ΓC(s)L(s)(0.382+0.923i)Λ(1−s)
Λ(s)=(=(2160s/2ΓC(s)L(s)(0.382+0.923i)Λ(1−s)
Degree: |
2 |
Conductor: |
2160
= 24⋅33⋅5
|
Sign: |
0.382+0.923i
|
Analytic conductor: |
1.07798 |
Root analytic conductor: |
1.03825 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2160(269,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2160, ( :0), 0.382+0.923i)
|
Particular Values
L(21) |
≈ |
1.049177723 |
L(21) |
≈ |
1.049177723 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+iT |
| 3 | 1 |
| 5 | 1+(−0.707−0.707i)T |
good | 7 | 1+1.41T+T2 |
| 11 | 1+(0.707+0.707i)T+iT2 |
| 13 | 1+(−0.707+0.707i)T−iT2 |
| 17 | 1−T+T2 |
| 19 | 1+(−1−i)T+iT2 |
| 23 | 1+iT−T2 |
| 29 | 1+(−0.707+0.707i)T−iT2 |
| 31 | 1−T+T2 |
| 37 | 1+iT2 |
| 41 | 1+T2 |
| 43 | 1+(−0.707−0.707i)T+iT2 |
| 47 | 1+T+T2 |
| 53 | 1+(−1+i)T−iT2 |
| 59 | 1+iT2 |
| 61 | 1+iT2 |
| 67 | 1−iT2 |
| 71 | 1−1.41T+T2 |
| 73 | 1+T2 |
| 79 | 1−T+T2 |
| 83 | 1+iT2 |
| 89 | 1+1.41T+T2 |
| 97 | 1−1.41iT−T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.555679797801535057789549525654, −8.411899839042732464952573223106, −7.83593695529272576021714635961, −6.51365430204369063828084806564, −5.90596665185178497415205119033, −5.24465263767617297644196765222, −3.74460014154716811243422677034, −3.12546505449989127700786031103, −2.57825240248484960503014651720, −0.970317249283850218835519861589,
1.11347230893064976083318470057, 2.82505653744155938864322342252, 3.82491265488193320850354273197, 4.91850566462571358267776070422, 5.50067882348676699322112194661, 6.32492904311922242424183096741, 6.95732698762567405600377437589, 7.75792173831450288889235713108, 8.720650669136127417091031763067, 9.392340317272698266537214803785