L(s) = 1 | − i·2-s − 4-s + (0.707 + 0.707i)5-s − 1.41·7-s + i·8-s + (0.707 − 0.707i)10-s + (−0.707 − 0.707i)11-s + (0.707 − 0.707i)13-s + 1.41i·14-s + 16-s + 17-s + (1 + i)19-s + (−0.707 − 0.707i)20-s + (−0.707 + 0.707i)22-s − i·23-s + ⋯ |
L(s) = 1 | − i·2-s − 4-s + (0.707 + 0.707i)5-s − 1.41·7-s + i·8-s + (0.707 − 0.707i)10-s + (−0.707 − 0.707i)11-s + (0.707 − 0.707i)13-s + 1.41i·14-s + 16-s + 17-s + (1 + i)19-s + (−0.707 − 0.707i)20-s + (−0.707 + 0.707i)22-s − i·23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2160 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.382 + 0.923i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2160 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.382 + 0.923i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.049177723\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.049177723\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + iT \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (-0.707 - 0.707i)T \) |
good | 7 | \( 1 + 1.41T + T^{2} \) |
| 11 | \( 1 + (0.707 + 0.707i)T + iT^{2} \) |
| 13 | \( 1 + (-0.707 + 0.707i)T - iT^{2} \) |
| 17 | \( 1 - T + T^{2} \) |
| 19 | \( 1 + (-1 - i)T + iT^{2} \) |
| 23 | \( 1 + iT - T^{2} \) |
| 29 | \( 1 + (-0.707 + 0.707i)T - iT^{2} \) |
| 31 | \( 1 - T + T^{2} \) |
| 37 | \( 1 + iT^{2} \) |
| 41 | \( 1 + T^{2} \) |
| 43 | \( 1 + (-0.707 - 0.707i)T + iT^{2} \) |
| 47 | \( 1 + T + T^{2} \) |
| 53 | \( 1 + (-1 + i)T - iT^{2} \) |
| 59 | \( 1 + iT^{2} \) |
| 61 | \( 1 + iT^{2} \) |
| 67 | \( 1 - iT^{2} \) |
| 71 | \( 1 - 1.41T + T^{2} \) |
| 73 | \( 1 + T^{2} \) |
| 79 | \( 1 - T + T^{2} \) |
| 83 | \( 1 + iT^{2} \) |
| 89 | \( 1 + 1.41T + T^{2} \) |
| 97 | \( 1 - 1.41iT - T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.555679797801535057789549525654, −8.411899839042732464952573223106, −7.83593695529272576021714635961, −6.51365430204369063828084806564, −5.90596665185178497415205119033, −5.24465263767617297644196765222, −3.74460014154716811243422677034, −3.12546505449989127700786031103, −2.57825240248484960503014651720, −0.970317249283850218835519861589,
1.11347230893064976083318470057, 2.82505653744155938864322342252, 3.82491265488193320850354273197, 4.91850566462571358267776070422, 5.50067882348676699322112194661, 6.32492904311922242424183096741, 6.95732698762567405600377437589, 7.75792173831450288889235713108, 8.720650669136127417091031763067, 9.392340317272698266537214803785