L(s) = 1 | + (0.965 − 0.258i)2-s + (0.866 − 0.499i)4-s + (−0.707 + 0.707i)5-s + (0.707 − 0.707i)8-s + (−0.500 + 0.866i)10-s + (0.500 − 0.866i)16-s + 0.517·17-s + (1.36 + 1.36i)19-s + (−0.258 + 0.965i)20-s − 0.517i·23-s − 1.00i·25-s + 1.73·31-s + (0.258 − 0.965i)32-s + (0.499 − 0.133i)34-s + (1.67 + 0.965i)38-s + ⋯ |
L(s) = 1 | + (0.965 − 0.258i)2-s + (0.866 − 0.499i)4-s + (−0.707 + 0.707i)5-s + (0.707 − 0.707i)8-s + (−0.500 + 0.866i)10-s + (0.500 − 0.866i)16-s + 0.517·17-s + (1.36 + 1.36i)19-s + (−0.258 + 0.965i)20-s − 0.517i·23-s − 1.00i·25-s + 1.73·31-s + (0.258 − 0.965i)32-s + (0.499 − 0.133i)34-s + (1.67 + 0.965i)38-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2160 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.991 + 0.130i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2160 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.991 + 0.130i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(2.020587557\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.020587557\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.965 + 0.258i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (0.707 - 0.707i)T \) |
good | 7 | \( 1 + T^{2} \) |
| 11 | \( 1 + iT^{2} \) |
| 13 | \( 1 - iT^{2} \) |
| 17 | \( 1 - 0.517T + T^{2} \) |
| 19 | \( 1 + (-1.36 - 1.36i)T + iT^{2} \) |
| 23 | \( 1 + 0.517iT - T^{2} \) |
| 29 | \( 1 - iT^{2} \) |
| 31 | \( 1 - 1.73T + T^{2} \) |
| 37 | \( 1 + iT^{2} \) |
| 41 | \( 1 + T^{2} \) |
| 43 | \( 1 + iT^{2} \) |
| 47 | \( 1 + 1.41T + T^{2} \) |
| 53 | \( 1 + (1.22 - 1.22i)T - iT^{2} \) |
| 59 | \( 1 + iT^{2} \) |
| 61 | \( 1 + (1.36 + 1.36i)T + iT^{2} \) |
| 67 | \( 1 - iT^{2} \) |
| 71 | \( 1 + T^{2} \) |
| 73 | \( 1 + T^{2} \) |
| 79 | \( 1 + T + T^{2} \) |
| 83 | \( 1 + (-1.22 - 1.22i)T + iT^{2} \) |
| 89 | \( 1 + T^{2} \) |
| 97 | \( 1 - T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.570154790350715105550016537471, −8.015506872958612472310954824371, −7.77141944380481532382919997268, −6.67599528886480564516435730746, −6.15320985926126871135944656160, −5.14136201317314403099554303208, −4.31249022713211074496259772437, −3.37765107572323775135008105252, −2.85787584510967764741605991585, −1.43077858161273097815457052874,
1.32986421537821225354457699234, 2.88293783351315656184906670919, 3.54067361044195179921401347509, 4.71770579692872513338808996835, 4.98687878794457307218893570574, 6.03400900501140486274073434248, 6.93434460139263097614863614342, 7.67960707804165621390199472094, 8.228315189664579145157785561193, 9.187682203148868289193673424541