L(s) = 1 | + (0.965 − 0.258i)2-s + (0.866 − 0.499i)4-s + (−0.707 + 0.707i)5-s + (0.707 − 0.707i)8-s + (−0.500 + 0.866i)10-s + (0.500 − 0.866i)16-s + 0.517·17-s + (1.36 + 1.36i)19-s + (−0.258 + 0.965i)20-s − 0.517i·23-s − 1.00i·25-s + 1.73·31-s + (0.258 − 0.965i)32-s + (0.499 − 0.133i)34-s + (1.67 + 0.965i)38-s + ⋯ |
L(s) = 1 | + (0.965 − 0.258i)2-s + (0.866 − 0.499i)4-s + (−0.707 + 0.707i)5-s + (0.707 − 0.707i)8-s + (−0.500 + 0.866i)10-s + (0.500 − 0.866i)16-s + 0.517·17-s + (1.36 + 1.36i)19-s + (−0.258 + 0.965i)20-s − 0.517i·23-s − 1.00i·25-s + 1.73·31-s + (0.258 − 0.965i)32-s + (0.499 − 0.133i)34-s + (1.67 + 0.965i)38-s + ⋯ |
Λ(s)=(=(2160s/2ΓC(s)L(s)(0.991+0.130i)Λ(1−s)
Λ(s)=(=(2160s/2ΓC(s)L(s)(0.991+0.130i)Λ(1−s)
Degree: |
2 |
Conductor: |
2160
= 24⋅33⋅5
|
Sign: |
0.991+0.130i
|
Analytic conductor: |
1.07798 |
Root analytic conductor: |
1.03825 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2160(269,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2160, ( :0), 0.991+0.130i)
|
Particular Values
L(21) |
≈ |
2.020587557 |
L(21) |
≈ |
2.020587557 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.965+0.258i)T |
| 3 | 1 |
| 5 | 1+(0.707−0.707i)T |
good | 7 | 1+T2 |
| 11 | 1+iT2 |
| 13 | 1−iT2 |
| 17 | 1−0.517T+T2 |
| 19 | 1+(−1.36−1.36i)T+iT2 |
| 23 | 1+0.517iT−T2 |
| 29 | 1−iT2 |
| 31 | 1−1.73T+T2 |
| 37 | 1+iT2 |
| 41 | 1+T2 |
| 43 | 1+iT2 |
| 47 | 1+1.41T+T2 |
| 53 | 1+(1.22−1.22i)T−iT2 |
| 59 | 1+iT2 |
| 61 | 1+(1.36+1.36i)T+iT2 |
| 67 | 1−iT2 |
| 71 | 1+T2 |
| 73 | 1+T2 |
| 79 | 1+T+T2 |
| 83 | 1+(−1.22−1.22i)T+iT2 |
| 89 | 1+T2 |
| 97 | 1−T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.570154790350715105550016537471, −8.015506872958612472310954824371, −7.77141944380481532382919997268, −6.67599528886480564516435730746, −6.15320985926126871135944656160, −5.14136201317314403099554303208, −4.31249022713211074496259772437, −3.37765107572323775135008105252, −2.85787584510967764741605991585, −1.43077858161273097815457052874,
1.32986421537821225354457699234, 2.88293783351315656184906670919, 3.54067361044195179921401347509, 4.71770579692872513338808996835, 4.98687878794457307218893570574, 6.03400900501140486274073434248, 6.93434460139263097614863614342, 7.67960707804165621390199472094, 8.228315189664579145157785561193, 9.187682203148868289193673424541