L(s) = 1 | + (−0.965 − 0.258i)2-s + (0.866 + 0.499i)4-s + (−0.707 − 0.707i)5-s + (−0.707 − 0.707i)8-s + (0.500 + 0.866i)10-s + (0.500 + 0.866i)16-s + 1.93i·17-s + (−1.36 + 1.36i)19-s + (−0.258 − 0.965i)20-s + 0.517i·23-s + 1.00i·25-s − i·31-s + (−0.258 − 0.965i)32-s + (0.499 − 1.86i)34-s + (1.67 − 0.965i)38-s + ⋯ |
L(s) = 1 | + (−0.965 − 0.258i)2-s + (0.866 + 0.499i)4-s + (−0.707 − 0.707i)5-s + (−0.707 − 0.707i)8-s + (0.500 + 0.866i)10-s + (0.500 + 0.866i)16-s + 1.93i·17-s + (−1.36 + 1.36i)19-s + (−0.258 − 0.965i)20-s + 0.517i·23-s + 1.00i·25-s − i·31-s + (−0.258 − 0.965i)32-s + (0.499 − 1.86i)34-s + (1.67 − 0.965i)38-s + ⋯ |
Λ(s)=(=(2160s/2ΓC(s)L(s)(0.608−0.793i)Λ(1−s)
Λ(s)=(=(2160s/2ΓC(s)L(s)(0.608−0.793i)Λ(1−s)
Degree: |
2 |
Conductor: |
2160
= 24⋅33⋅5
|
Sign: |
0.608−0.793i
|
Analytic conductor: |
1.07798 |
Root analytic conductor: |
1.03825 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2160(1459,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2160, ( :0), 0.608−0.793i)
|
Particular Values
L(21) |
≈ |
0.5073706961 |
L(21) |
≈ |
0.5073706961 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.965+0.258i)T |
| 3 | 1 |
| 5 | 1+(0.707+0.707i)T |
good | 7 | 1−T2 |
| 11 | 1+iT2 |
| 13 | 1−iT2 |
| 17 | 1−1.93iT−T2 |
| 19 | 1+(1.36−1.36i)T−iT2 |
| 23 | 1−0.517iT−T2 |
| 29 | 1+iT2 |
| 31 | 1+iT−T2 |
| 37 | 1+iT2 |
| 41 | 1−T2 |
| 43 | 1−iT2 |
| 47 | 1−1.41T+T2 |
| 53 | 1+(−1.22−1.22i)T+iT2 |
| 59 | 1+iT2 |
| 61 | 1+(0.366+0.366i)T+iT2 |
| 67 | 1+iT2 |
| 71 | 1+T2 |
| 73 | 1+T2 |
| 79 | 1−1.73iT−T2 |
| 83 | 1+(0.707+0.707i)T+iT2 |
| 89 | 1−T2 |
| 97 | 1−T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.173162764443802924345086097843, −8.583625704647858337024889065341, −8.016652949355654006477835670804, −7.41839880940624150507255602132, −6.27665574855962067544408979897, −5.67743619891521933673443141791, −4.05789509306190249838425002551, −3.83523755571541340468162986534, −2.28136923387180528574986292052, −1.28640449778082415239510948007,
0.51826993360904595937007089043, 2.35567183302053413406086109627, 2.96377883081000609096547569858, 4.32379546558310405755552285077, 5.26117657174370886429455157181, 6.40875171508268666782621023849, 7.06965871587482881501547023200, 7.41361849347263291077823645139, 8.567253422774888853841064442608, 8.910676713099752165168887931268