L(s) = 1 | + (−0.965 − 0.258i)2-s + (0.866 + 0.499i)4-s + (−0.707 − 0.707i)5-s + (−0.707 − 0.707i)8-s + (0.500 + 0.866i)10-s + (0.500 + 0.866i)16-s + 1.93i·17-s + (−1.36 + 1.36i)19-s + (−0.258 − 0.965i)20-s + 0.517i·23-s + 1.00i·25-s − i·31-s + (−0.258 − 0.965i)32-s + (0.499 − 1.86i)34-s + (1.67 − 0.965i)38-s + ⋯ |
L(s) = 1 | + (−0.965 − 0.258i)2-s + (0.866 + 0.499i)4-s + (−0.707 − 0.707i)5-s + (−0.707 − 0.707i)8-s + (0.500 + 0.866i)10-s + (0.500 + 0.866i)16-s + 1.93i·17-s + (−1.36 + 1.36i)19-s + (−0.258 − 0.965i)20-s + 0.517i·23-s + 1.00i·25-s − i·31-s + (−0.258 − 0.965i)32-s + (0.499 − 1.86i)34-s + (1.67 − 0.965i)38-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2160 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.608 - 0.793i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2160 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.608 - 0.793i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.5073706961\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.5073706961\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.965 + 0.258i)T \) |
| 3 | \( 1 \) |
| 5 | \( 1 + (0.707 + 0.707i)T \) |
good | 7 | \( 1 - T^{2} \) |
| 11 | \( 1 + iT^{2} \) |
| 13 | \( 1 - iT^{2} \) |
| 17 | \( 1 - 1.93iT - T^{2} \) |
| 19 | \( 1 + (1.36 - 1.36i)T - iT^{2} \) |
| 23 | \( 1 - 0.517iT - T^{2} \) |
| 29 | \( 1 + iT^{2} \) |
| 31 | \( 1 + iT - T^{2} \) |
| 37 | \( 1 + iT^{2} \) |
| 41 | \( 1 - T^{2} \) |
| 43 | \( 1 - iT^{2} \) |
| 47 | \( 1 - 1.41T + T^{2} \) |
| 53 | \( 1 + (-1.22 - 1.22i)T + iT^{2} \) |
| 59 | \( 1 + iT^{2} \) |
| 61 | \( 1 + (0.366 + 0.366i)T + iT^{2} \) |
| 67 | \( 1 + iT^{2} \) |
| 71 | \( 1 + T^{2} \) |
| 73 | \( 1 + T^{2} \) |
| 79 | \( 1 - 1.73iT - T^{2} \) |
| 83 | \( 1 + (0.707 + 0.707i)T + iT^{2} \) |
| 89 | \( 1 - T^{2} \) |
| 97 | \( 1 - T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.173162764443802924345086097843, −8.583625704647858337024889065341, −8.016652949355654006477835670804, −7.41839880940624150507255602132, −6.27665574855962067544408979897, −5.67743619891521933673443141791, −4.05789509306190249838425002551, −3.83523755571541340468162986534, −2.28136923387180528574986292052, −1.28640449778082415239510948007,
0.51826993360904595937007089043, 2.35567183302053413406086109627, 2.96377883081000609096547569858, 4.32379546558310405755552285077, 5.26117657174370886429455157181, 6.40875171508268666782621023849, 7.06965871587482881501547023200, 7.41361849347263291077823645139, 8.567253422774888853841064442608, 8.910676713099752165168887931268