L(s) = 1 | − 0.712·2-s + 3-s − 1.49·4-s − 0.712·6-s + 2.77·7-s + 2.48·8-s + 9-s + 4.26·11-s − 1.49·12-s − 0.779·13-s − 1.98·14-s + 1.21·16-s + 1.90·17-s − 0.712·18-s + 6.72·19-s + 2.77·21-s − 3.04·22-s − 2.17·23-s + 2.48·24-s + 0.555·26-s + 27-s − 4.14·28-s + 29-s − 8.82·31-s − 5.83·32-s + 4.26·33-s − 1.35·34-s + ⋯ |
L(s) = 1 | − 0.503·2-s + 0.577·3-s − 0.746·4-s − 0.290·6-s + 1.05·7-s + 0.879·8-s + 0.333·9-s + 1.28·11-s − 0.430·12-s − 0.216·13-s − 0.529·14-s + 0.302·16-s + 0.461·17-s − 0.167·18-s + 1.54·19-s + 0.606·21-s − 0.648·22-s − 0.452·23-s + 0.507·24-s + 0.108·26-s + 0.192·27-s − 0.783·28-s + 0.185·29-s − 1.58·31-s − 1.03·32-s + 0.742·33-s − 0.232·34-s + ⋯ |
Λ(s)=(=(2175s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(2175s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
1.830161120 |
L(21) |
≈ |
1.830161120 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1−T |
| 5 | 1 |
| 29 | 1−T |
good | 2 | 1+0.712T+2T2 |
| 7 | 1−2.77T+7T2 |
| 11 | 1−4.26T+11T2 |
| 13 | 1+0.779T+13T2 |
| 17 | 1−1.90T+17T2 |
| 19 | 1−6.72T+19T2 |
| 23 | 1+2.17T+23T2 |
| 31 | 1+8.82T+31T2 |
| 37 | 1+1.48T+37T2 |
| 41 | 1+7.71T+41T2 |
| 43 | 1−8.19T+43T2 |
| 47 | 1−5.19T+47T2 |
| 53 | 1−11.7T+53T2 |
| 59 | 1+4.46T+59T2 |
| 61 | 1+5.24T+61T2 |
| 67 | 1−8.49T+67T2 |
| 71 | 1−0.663T+71T2 |
| 73 | 1+16.5T+73T2 |
| 79 | 1−9.54T+79T2 |
| 83 | 1−0.0123T+83T2 |
| 89 | 1+5.46T+89T2 |
| 97 | 1−0.952T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.009662271731103879223555134214, −8.470988116287035332471923740060, −7.57137773425025841365339471799, −7.21220420017377197627456492370, −5.77226877713427626041308812698, −4.99143255628435602660286254547, −4.12370012665830086078976485887, −3.40326561960749779188572113345, −1.86287764034738179322724801509, −1.04047428153701103143638325675,
1.04047428153701103143638325675, 1.86287764034738179322724801509, 3.40326561960749779188572113345, 4.12370012665830086078976485887, 4.99143255628435602660286254547, 5.77226877713427626041308812698, 7.21220420017377197627456492370, 7.57137773425025841365339471799, 8.470988116287035332471923740060, 9.009662271731103879223555134214