L(s) = 1 | − 0.347·2-s − 3-s − 0.879·4-s + 0.347·6-s − 1.87·7-s + 0.652·8-s + 9-s − 1.53·11-s + 0.879·12-s + 0.347·13-s + 0.652·14-s + 0.652·16-s − 1.53·17-s − 0.347·18-s + 1.87·21-s + 0.532·22-s − 0.652·24-s − 0.120·26-s − 27-s + 1.65·28-s − 29-s − 0.879·32-s + 1.53·33-s + 0.532·34-s − 0.879·36-s − 0.347·39-s + 41-s + ⋯ |
L(s) = 1 | − 0.347·2-s − 3-s − 0.879·4-s + 0.347·6-s − 1.87·7-s + 0.652·8-s + 9-s − 1.53·11-s + 0.879·12-s + 0.347·13-s + 0.652·14-s + 0.652·16-s − 1.53·17-s − 0.347·18-s + 1.87·21-s + 0.532·22-s − 0.652·24-s − 0.120·26-s − 27-s + 1.65·28-s − 29-s − 0.879·32-s + 1.53·33-s + 0.532·34-s − 0.879·36-s − 0.347·39-s + 41-s + ⋯ |
Λ(s)=(=(2175s/2ΓC(s)L(s)Λ(1−s)
Λ(s)=(=(2175s/2ΓC(s)L(s)Λ(1−s)
Degree: |
2 |
Conductor: |
2175
= 3⋅52⋅29
|
Sign: |
1
|
Analytic conductor: |
1.08546 |
Root analytic conductor: |
1.04185 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2175(1826,⋅)
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(2, 2175, ( :0), 1)
|
Particular Values
L(21) |
≈ |
0.2394535273 |
L(21) |
≈ |
0.2394535273 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+T |
| 5 | 1 |
| 29 | 1+T |
good | 2 | 1+0.347T+T2 |
| 7 | 1+1.87T+T2 |
| 11 | 1+1.53T+T2 |
| 13 | 1−0.347T+T2 |
| 17 | 1+1.53T+T2 |
| 19 | 1−T2 |
| 23 | 1−T2 |
| 31 | 1−T2 |
| 37 | 1−T2 |
| 41 | 1−T+T2 |
| 43 | 1−T2 |
| 47 | 1−1.87T+T2 |
| 53 | 1−T2 |
| 59 | 1−T2 |
| 61 | 1−T2 |
| 67 | 1−1.53T+T2 |
| 71 | 1−T2 |
| 73 | 1−T2 |
| 79 | 1−T2 |
| 83 | 1−T2 |
| 89 | 1+0.347T+T2 |
| 97 | 1−T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.396118514439231217003398098903, −8.685899058452189065267677146579, −7.58483552922305159556451678421, −6.92166442159257411947785103629, −6.00700754698867846014773369746, −5.44725657725167988838580996213, −4.43708997874958087758069894207, −3.66809801714371974600384617121, −2.41317590431588517460914701473, −0.49730740771534572588371024792,
0.49730740771534572588371024792, 2.41317590431588517460914701473, 3.66809801714371974600384617121, 4.43708997874958087758069894207, 5.44725657725167988838580996213, 6.00700754698867846014773369746, 6.92166442159257411947785103629, 7.58483552922305159556451678421, 8.685899058452189065267677146579, 9.396118514439231217003398098903