L(s) = 1 | − 0.347·2-s − 3-s − 0.879·4-s + 0.347·6-s − 1.87·7-s + 0.652·8-s + 9-s − 1.53·11-s + 0.879·12-s + 0.347·13-s + 0.652·14-s + 0.652·16-s − 1.53·17-s − 0.347·18-s + 1.87·21-s + 0.532·22-s − 0.652·24-s − 0.120·26-s − 27-s + 1.65·28-s − 29-s − 0.879·32-s + 1.53·33-s + 0.532·34-s − 0.879·36-s − 0.347·39-s + 41-s + ⋯ |
L(s) = 1 | − 0.347·2-s − 3-s − 0.879·4-s + 0.347·6-s − 1.87·7-s + 0.652·8-s + 9-s − 1.53·11-s + 0.879·12-s + 0.347·13-s + 0.652·14-s + 0.652·16-s − 1.53·17-s − 0.347·18-s + 1.87·21-s + 0.532·22-s − 0.652·24-s − 0.120·26-s − 27-s + 1.65·28-s − 29-s − 0.879·32-s + 1.53·33-s + 0.532·34-s − 0.879·36-s − 0.347·39-s + 41-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 2175 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2175 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.2394535273\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.2394535273\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + T \) |
| 5 | \( 1 \) |
| 29 | \( 1 + T \) |
good | 2 | \( 1 + 0.347T + T^{2} \) |
| 7 | \( 1 + 1.87T + T^{2} \) |
| 11 | \( 1 + 1.53T + T^{2} \) |
| 13 | \( 1 - 0.347T + T^{2} \) |
| 17 | \( 1 + 1.53T + T^{2} \) |
| 19 | \( 1 - T^{2} \) |
| 23 | \( 1 - T^{2} \) |
| 31 | \( 1 - T^{2} \) |
| 37 | \( 1 - T^{2} \) |
| 41 | \( 1 - T + T^{2} \) |
| 43 | \( 1 - T^{2} \) |
| 47 | \( 1 - 1.87T + T^{2} \) |
| 53 | \( 1 - T^{2} \) |
| 59 | \( 1 - T^{2} \) |
| 61 | \( 1 - T^{2} \) |
| 67 | \( 1 - 1.53T + T^{2} \) |
| 71 | \( 1 - T^{2} \) |
| 73 | \( 1 - T^{2} \) |
| 79 | \( 1 - T^{2} \) |
| 83 | \( 1 - T^{2} \) |
| 89 | \( 1 + 0.347T + T^{2} \) |
| 97 | \( 1 - T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.396118514439231217003398098903, −8.685899058452189065267677146579, −7.58483552922305159556451678421, −6.92166442159257411947785103629, −6.00700754698867846014773369746, −5.44725657725167988838580996213, −4.43708997874958087758069894207, −3.66809801714371974600384617121, −2.41317590431588517460914701473, −0.49730740771534572588371024792,
0.49730740771534572588371024792, 2.41317590431588517460914701473, 3.66809801714371974600384617121, 4.43708997874958087758069894207, 5.44725657725167988838580996213, 6.00700754698867846014773369746, 6.92166442159257411947785103629, 7.58483552922305159556451678421, 8.685899058452189065267677146579, 9.396118514439231217003398098903