Properties

Label 2-2175-87.86-c0-0-1
Degree $2$
Conductor $2175$
Sign $1$
Analytic cond. $1.08546$
Root an. cond. $1.04185$
Motivic weight $0$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 0.347·2-s − 3-s − 0.879·4-s + 0.347·6-s − 1.87·7-s + 0.652·8-s + 9-s − 1.53·11-s + 0.879·12-s + 0.347·13-s + 0.652·14-s + 0.652·16-s − 1.53·17-s − 0.347·18-s + 1.87·21-s + 0.532·22-s − 0.652·24-s − 0.120·26-s − 27-s + 1.65·28-s − 29-s − 0.879·32-s + 1.53·33-s + 0.532·34-s − 0.879·36-s − 0.347·39-s + 41-s + ⋯
L(s)  = 1  − 0.347·2-s − 3-s − 0.879·4-s + 0.347·6-s − 1.87·7-s + 0.652·8-s + 9-s − 1.53·11-s + 0.879·12-s + 0.347·13-s + 0.652·14-s + 0.652·16-s − 1.53·17-s − 0.347·18-s + 1.87·21-s + 0.532·22-s − 0.652·24-s − 0.120·26-s − 27-s + 1.65·28-s − 29-s − 0.879·32-s + 1.53·33-s + 0.532·34-s − 0.879·36-s − 0.347·39-s + 41-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2175 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2175 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2175\)    =    \(3 \cdot 5^{2} \cdot 29\)
Sign: $1$
Analytic conductor: \(1.08546\)
Root analytic conductor: \(1.04185\)
Motivic weight: \(0\)
Rational: no
Arithmetic: yes
Character: $\chi_{2175} (1826, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2175,\ (\ :0),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(0.2394535273\)
\(L(\frac12)\) \(\approx\) \(0.2394535273\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + T \)
5 \( 1 \)
29 \( 1 + T \)
good2 \( 1 + 0.347T + T^{2} \)
7 \( 1 + 1.87T + T^{2} \)
11 \( 1 + 1.53T + T^{2} \)
13 \( 1 - 0.347T + T^{2} \)
17 \( 1 + 1.53T + T^{2} \)
19 \( 1 - T^{2} \)
23 \( 1 - T^{2} \)
31 \( 1 - T^{2} \)
37 \( 1 - T^{2} \)
41 \( 1 - T + T^{2} \)
43 \( 1 - T^{2} \)
47 \( 1 - 1.87T + T^{2} \)
53 \( 1 - T^{2} \)
59 \( 1 - T^{2} \)
61 \( 1 - T^{2} \)
67 \( 1 - 1.53T + T^{2} \)
71 \( 1 - T^{2} \)
73 \( 1 - T^{2} \)
79 \( 1 - T^{2} \)
83 \( 1 - T^{2} \)
89 \( 1 + 0.347T + T^{2} \)
97 \( 1 - T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.396118514439231217003398098903, −8.685899058452189065267677146579, −7.58483552922305159556451678421, −6.92166442159257411947785103629, −6.00700754698867846014773369746, −5.44725657725167988838580996213, −4.43708997874958087758069894207, −3.66809801714371974600384617121, −2.41317590431588517460914701473, −0.49730740771534572588371024792, 0.49730740771534572588371024792, 2.41317590431588517460914701473, 3.66809801714371974600384617121, 4.43708997874958087758069894207, 5.44725657725167988838580996213, 6.00700754698867846014773369746, 6.92166442159257411947785103629, 7.58483552922305159556451678421, 8.685899058452189065267677146579, 9.396118514439231217003398098903

Graph of the $Z$-function along the critical line