Properties

Label 2-2175-87.86-c0-0-3
Degree 22
Conductor 21752175
Sign 11
Analytic cond. 1.085461.08546
Root an. cond. 1.041851.04185
Motivic weight 00
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.87·2-s + 3-s + 2.53·4-s − 1.87·6-s − 1.53·7-s − 2.87·8-s + 9-s − 0.347·11-s + 2.53·12-s + 1.87·13-s + 2.87·14-s + 2.87·16-s + 0.347·17-s − 1.87·18-s − 1.53·21-s + 0.652·22-s − 2.87·24-s − 3.53·26-s + 27-s − 3.87·28-s − 29-s − 2.53·32-s − 0.347·33-s − 0.652·34-s + 2.53·36-s + 1.87·39-s + 41-s + ⋯
L(s)  = 1  − 1.87·2-s + 3-s + 2.53·4-s − 1.87·6-s − 1.53·7-s − 2.87·8-s + 9-s − 0.347·11-s + 2.53·12-s + 1.87·13-s + 2.87·14-s + 2.87·16-s + 0.347·17-s − 1.87·18-s − 1.53·21-s + 0.652·22-s − 2.87·24-s − 3.53·26-s + 27-s − 3.87·28-s − 29-s − 2.53·32-s − 0.347·33-s − 0.652·34-s + 2.53·36-s + 1.87·39-s + 41-s + ⋯

Functional equation

Λ(s)=(2175s/2ΓC(s)L(s)=(Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 2175 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}
Λ(s)=(2175s/2ΓC(s)L(s)=(Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 2175 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 21752175    =    352293 \cdot 5^{2} \cdot 29
Sign: 11
Analytic conductor: 1.085461.08546
Root analytic conductor: 1.041851.04185
Motivic weight: 00
Rational: no
Arithmetic: yes
Character: χ2175(1826,)\chi_{2175} (1826, \cdot )
Primitive: yes
Self-dual: yes
Analytic rank: 00
Selberg data: (2, 2175, ( :0), 1)(2,\ 2175,\ (\ :0),\ 1)

Particular Values

L(12)L(\frac{1}{2}) \approx 0.66945180670.6694518067
L(12)L(\frac12) \approx 0.66945180670.6694518067
L(1)L(1) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad3 1T 1 - T
5 1 1
29 1+T 1 + T
good2 1+1.87T+T2 1 + 1.87T + T^{2}
7 1+1.53T+T2 1 + 1.53T + T^{2}
11 1+0.347T+T2 1 + 0.347T + T^{2}
13 11.87T+T2 1 - 1.87T + T^{2}
17 10.347T+T2 1 - 0.347T + T^{2}
19 1T2 1 - T^{2}
23 1T2 1 - T^{2}
31 1T2 1 - T^{2}
37 1T2 1 - T^{2}
41 1T+T2 1 - T + T^{2}
43 1T2 1 - T^{2}
47 11.53T+T2 1 - 1.53T + T^{2}
53 1T2 1 - T^{2}
59 1T2 1 - T^{2}
61 1T2 1 - T^{2}
67 1+0.347T+T2 1 + 0.347T + T^{2}
71 1T2 1 - T^{2}
73 1T2 1 - T^{2}
79 1T2 1 - T^{2}
83 1T2 1 - T^{2}
89 11.87T+T2 1 - 1.87T + T^{2}
97 1T2 1 - T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−9.070886535969787719392027852706, −8.794655490524518078331198545220, −7.86323795441089878409619645631, −7.30625998703915144637154656499, −6.43713359714796277460327852542, −5.88609013077102886402845440676, −3.80980449569617653538362104569, −3.17069456319245308203767496122, −2.23321786640478887660271663919, −1.02541387754140829046272838321, 1.02541387754140829046272838321, 2.23321786640478887660271663919, 3.17069456319245308203767496122, 3.80980449569617653538362104569, 5.88609013077102886402845440676, 6.43713359714796277460327852542, 7.30625998703915144637154656499, 7.86323795441089878409619645631, 8.794655490524518078331198545220, 9.070886535969787719392027852706

Graph of the ZZ-function along the critical line