L(s) = 1 | − 1.53·2-s − 3-s + 1.34·4-s + 1.53·6-s + 0.347·7-s − 0.532·8-s + 9-s + 1.87·11-s − 1.34·12-s + 1.53·13-s − 0.532·14-s − 0.532·16-s + 1.87·17-s − 1.53·18-s − 0.347·21-s − 2.87·22-s + 0.532·24-s − 2.34·26-s − 27-s + 0.467·28-s − 29-s + 1.34·32-s − 1.87·33-s − 2.87·34-s + 1.34·36-s − 1.53·39-s + 41-s + ⋯ |
L(s) = 1 | − 1.53·2-s − 3-s + 1.34·4-s + 1.53·6-s + 0.347·7-s − 0.532·8-s + 9-s + 1.87·11-s − 1.34·12-s + 1.53·13-s − 0.532·14-s − 0.532·16-s + 1.87·17-s − 1.53·18-s − 0.347·21-s − 2.87·22-s + 0.532·24-s − 2.34·26-s − 27-s + 0.467·28-s − 29-s + 1.34·32-s − 1.87·33-s − 2.87·34-s + 1.34·36-s − 1.53·39-s + 41-s + ⋯ |
Λ(s)=(=(2175s/2ΓC(s)L(s)Λ(1−s)
Λ(s)=(=(2175s/2ΓC(s)L(s)Λ(1−s)
Degree: |
2 |
Conductor: |
2175
= 3⋅52⋅29
|
Sign: |
1
|
Analytic conductor: |
1.08546 |
Root analytic conductor: |
1.04185 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2175(1826,⋅)
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(2, 2175, ( :0), 1)
|
Particular Values
L(21) |
≈ |
0.5531089543 |
L(21) |
≈ |
0.5531089543 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+T |
| 5 | 1 |
| 29 | 1+T |
good | 2 | 1+1.53T+T2 |
| 7 | 1−0.347T+T2 |
| 11 | 1−1.87T+T2 |
| 13 | 1−1.53T+T2 |
| 17 | 1−1.87T+T2 |
| 19 | 1−T2 |
| 23 | 1−T2 |
| 31 | 1−T2 |
| 37 | 1−T2 |
| 41 | 1−T+T2 |
| 43 | 1−T2 |
| 47 | 1+0.347T+T2 |
| 53 | 1−T2 |
| 59 | 1−T2 |
| 61 | 1−T2 |
| 67 | 1+1.87T+T2 |
| 71 | 1−T2 |
| 73 | 1−T2 |
| 79 | 1−T2 |
| 83 | 1−T2 |
| 89 | 1+1.53T+T2 |
| 97 | 1−T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.370231798785217174267696211616, −8.579943281937858846332289848704, −7.78568402852589979850302836332, −7.06299408771861551595904807137, −6.25909602560367724146302844124, −5.67830604541890026810108894041, −4.35847235339394158100138240385, −3.52757895222731274896147097187, −1.51489068005775694053626102262, −1.16696546040772382780751521796,
1.16696546040772382780751521796, 1.51489068005775694053626102262, 3.52757895222731274896147097187, 4.35847235339394158100138240385, 5.67830604541890026810108894041, 6.25909602560367724146302844124, 7.06299408771861551595904807137, 7.78568402852589979850302836332, 8.579943281937858846332289848704, 9.370231798785217174267696211616