L(s) = 1 | − 1.41i·2-s − 2.00·4-s + 9.68i·5-s − 8.70·7-s + 2.82i·8-s + 13.6·10-s − 2.23·13-s + 12.3i·14-s + 4.00·16-s + 6.99i·17-s − 6.91·19-s − 19.3i·20-s + 34.1i·23-s − 68.8·25-s + 3.15i·26-s + ⋯ |
L(s) = 1 | − 0.707i·2-s − 0.500·4-s + 1.93i·5-s − 1.24·7-s + 0.353i·8-s + 1.36·10-s − 0.171·13-s + 0.879i·14-s + 0.250·16-s + 0.411i·17-s − 0.363·19-s − 0.968i·20-s + 1.48i·23-s − 2.75·25-s + 0.121i·26-s + ⋯ |
Λ(s)=(=(2178s/2ΓC(s)L(s)(−0.816+0.577i)Λ(3−s)
Λ(s)=(=(2178s/2ΓC(s+1)L(s)(−0.816+0.577i)Λ(1−s)
Degree: |
2 |
Conductor: |
2178
= 2⋅32⋅112
|
Sign: |
−0.816+0.577i
|
Analytic conductor: |
59.3462 |
Root analytic conductor: |
7.70364 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2178(485,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2178, ( :1), −0.816+0.577i)
|
Particular Values
L(23) |
≈ |
0.2473210444 |
L(21) |
≈ |
0.2473210444 |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+1.41iT |
| 3 | 1 |
| 11 | 1 |
good | 5 | 1−9.68iT−25T2 |
| 7 | 1+8.70T+49T2 |
| 13 | 1+2.23T+169T2 |
| 17 | 1−6.99iT−289T2 |
| 19 | 1+6.91T+361T2 |
| 23 | 1−34.1iT−529T2 |
| 29 | 1−48.7iT−841T2 |
| 31 | 1+7.91T+961T2 |
| 37 | 1+22.1T+1.36e3T2 |
| 41 | 1+64.4iT−1.68e3T2 |
| 43 | 1−60.7T+1.84e3T2 |
| 47 | 1−53.8iT−2.20e3T2 |
| 53 | 1−37.7iT−2.80e3T2 |
| 59 | 1−46.6iT−3.48e3T2 |
| 61 | 1+25.2T+3.72e3T2 |
| 67 | 1+15.8T+4.48e3T2 |
| 71 | 1+29.9iT−5.04e3T2 |
| 73 | 1−32.4T+5.32e3T2 |
| 79 | 1−23.4T+6.24e3T2 |
| 83 | 1+44.7iT−6.88e3T2 |
| 89 | 1+118.iT−7.92e3T2 |
| 97 | 1+157.T+9.40e3T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.551955958522009002308391944852, −8.865518684671621666112314004003, −7.49264639083782818183782502439, −7.13135466045663505430725674123, −6.21825918185623323619609878470, −5.60179434391594907256023802710, −4.06034703196046891392435224133, −3.32127545524278867183323799985, −2.87267307863490094008036961946, −1.79220137213635586703884392415,
0.079372996611393857147562001010, 0.820740660022706072552508742637, 2.35779806487288083796362643482, 3.79372372635846106985503168698, 4.51276934050306117474378160086, 5.23506949902301015754437741807, 6.08601336399113725452268812854, 6.70155784394622444819399158257, 7.86691267183561394932473568972, 8.372174603662678246966385476563