L(s) = 1 | + (1.02 + 0.401i)2-s + (−0.580 − 0.538i)4-s + (1.00 + 0.687i)5-s + (2.62 − 0.364i)7-s + (−1.33 − 2.76i)8-s + (0.755 + 1.10i)10-s + (0.0890 + 0.590i)11-s + (2.95 − 2.35i)13-s + (2.82 + 0.679i)14-s + (−0.133 − 1.78i)16-s + (2.61 + 0.808i)17-s + (0.127 − 0.0734i)19-s + (−0.214 − 0.941i)20-s + (−0.146 + 0.640i)22-s + (2.07 + 6.71i)23-s + ⋯ |
L(s) = 1 | + (0.723 + 0.283i)2-s + (−0.290 − 0.269i)4-s + (0.450 + 0.307i)5-s + (0.990 − 0.137i)7-s + (−0.470 − 0.977i)8-s + (0.238 + 0.350i)10-s + (0.0268 + 0.178i)11-s + (0.819 − 0.653i)13-s + (0.755 + 0.181i)14-s + (−0.0334 − 0.446i)16-s + (0.635 + 0.195i)17-s + (0.0292 − 0.0168i)19-s + (−0.0480 − 0.210i)20-s + (−0.0311 + 0.136i)22-s + (0.431 + 1.39i)23-s + ⋯ |
Λ(s)=(=(441s/2ΓC(s)L(s)(0.998+0.0614i)Λ(2−s)
Λ(s)=(=(441s/2ΓC(s+1/2)L(s)(0.998+0.0614i)Λ(1−s)
Degree: |
2 |
Conductor: |
441
= 32⋅72
|
Sign: |
0.998+0.0614i
|
Analytic conductor: |
3.52140 |
Root analytic conductor: |
1.87654 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ441(395,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 441, ( :1/2), 0.998+0.0614i)
|
Particular Values
L(1) |
≈ |
2.12929−0.0654450i |
L(21) |
≈ |
2.12929−0.0654450i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 7 | 1+(−2.62+0.364i)T |
good | 2 | 1+(−1.02−0.401i)T+(1.46+1.36i)T2 |
| 5 | 1+(−1.00−0.687i)T+(1.82+4.65i)T2 |
| 11 | 1+(−0.0890−0.590i)T+(−10.5+3.24i)T2 |
| 13 | 1+(−2.95+2.35i)T+(2.89−12.6i)T2 |
| 17 | 1+(−2.61−0.808i)T+(14.0+9.57i)T2 |
| 19 | 1+(−0.127+0.0734i)T+(9.5−16.4i)T2 |
| 23 | 1+(−2.07−6.71i)T+(−19.0+12.9i)T2 |
| 29 | 1+(−2.75+0.628i)T+(26.1−12.5i)T2 |
| 31 | 1+(4.54+2.62i)T+(15.5+26.8i)T2 |
| 37 | 1+(0.323−0.300i)T+(2.76−36.8i)T2 |
| 41 | 1+(4.98−2.39i)T+(25.5−32.0i)T2 |
| 43 | 1+(−1.07−0.517i)T+(26.8+33.6i)T2 |
| 47 | 1+(−1.29+3.30i)T+(−34.4−31.9i)T2 |
| 53 | 1+(8.63−9.30i)T+(−3.96−52.8i)T2 |
| 59 | 1+(1.25−0.858i)T+(21.5−54.9i)T2 |
| 61 | 1+(9.59+10.3i)T+(−4.55+60.8i)T2 |
| 67 | 1+(1.69−2.93i)T+(−33.5−58.0i)T2 |
| 71 | 1+(6.84+1.56i)T+(63.9+30.8i)T2 |
| 73 | 1+(14.5−5.69i)T+(53.5−49.6i)T2 |
| 79 | 1+(−5.62−9.74i)T+(−39.5+68.4i)T2 |
| 83 | 1+(4.09−5.14i)T+(−18.4−80.9i)T2 |
| 89 | 1+(3.27+0.493i)T+(85.0+26.2i)T2 |
| 97 | 1−12.1iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.07926314507972821180382074210, −10.26109339346921102931162649797, −9.403452246441071383468549934053, −8.302313215447557977644546195603, −7.31626400082150071699502593648, −6.07730122234566828517903319570, −5.45332617919027766933063688560, −4.42103857433293739910532267498, −3.28213319612047592984934893276, −1.42012989970481559285994747240,
1.69835457465879813039446547194, 3.17175067727806713209055152401, 4.39384720924330396785213641291, 5.15853817449908670779532976428, 6.11360234420267403905945012349, 7.53973749545705054587993514855, 8.632281898566481898569022304130, 9.034001956269373956723837921271, 10.46679398187604612527311370522, 11.35120484489233600227611763501