L(s) = 1 | + (−1.72 − 0.677i)2-s + (1.05 + 0.975i)4-s + (−0.820 − 0.559i)5-s + (0.202 + 2.63i)7-s + (0.454 + 0.944i)8-s + (1.03 + 1.52i)10-s + (−0.669 − 4.44i)11-s + (0.491 − 0.391i)13-s + (1.43 − 4.68i)14-s + (−0.359 − 4.79i)16-s + (−7.67 − 2.36i)17-s + (0.358 − 0.206i)19-s + (−0.316 − 1.38i)20-s + (−1.85 + 8.11i)22-s + (2.22 + 7.21i)23-s + ⋯ |
L(s) = 1 | + (−1.21 − 0.478i)2-s + (0.525 + 0.487i)4-s + (−0.366 − 0.250i)5-s + (0.0763 + 0.997i)7-s + (0.160 + 0.333i)8-s + (0.327 + 0.480i)10-s + (−0.201 − 1.33i)11-s + (0.136 − 0.108i)13-s + (0.384 − 1.25i)14-s + (−0.0898 − 1.19i)16-s + (−1.86 − 0.574i)17-s + (0.0821 − 0.0474i)19-s + (−0.0708 − 0.310i)20-s + (−0.394 + 1.73i)22-s + (0.463 + 1.50i)23-s + ⋯ |
Λ(s)=(=(441s/2ΓC(s)L(s)(−0.982−0.183i)Λ(2−s)
Λ(s)=(=(441s/2ΓC(s+1/2)L(s)(−0.982−0.183i)Λ(1−s)
Degree: |
2 |
Conductor: |
441
= 32⋅72
|
Sign: |
−0.982−0.183i
|
Analytic conductor: |
3.52140 |
Root analytic conductor: |
1.87654 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ441(395,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 441, ( :1/2), −0.982−0.183i)
|
Particular Values
L(1) |
≈ |
0.0121992+0.131653i |
L(21) |
≈ |
0.0121992+0.131653i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 7 | 1+(−0.202−2.63i)T |
good | 2 | 1+(1.72+0.677i)T+(1.46+1.36i)T2 |
| 5 | 1+(0.820+0.559i)T+(1.82+4.65i)T2 |
| 11 | 1+(0.669+4.44i)T+(−10.5+3.24i)T2 |
| 13 | 1+(−0.491+0.391i)T+(2.89−12.6i)T2 |
| 17 | 1+(7.67+2.36i)T+(14.0+9.57i)T2 |
| 19 | 1+(−0.358+0.206i)T+(9.5−16.4i)T2 |
| 23 | 1+(−2.22−7.21i)T+(−19.0+12.9i)T2 |
| 29 | 1+(−0.523+0.119i)T+(26.1−12.5i)T2 |
| 31 | 1+(7.47+4.31i)T+(15.5+26.8i)T2 |
| 37 | 1+(5.17−4.79i)T+(2.76−36.8i)T2 |
| 41 | 1+(4.20−2.02i)T+(25.5−32.0i)T2 |
| 43 | 1+(6.50+3.13i)T+(26.8+33.6i)T2 |
| 47 | 1+(−2.32+5.92i)T+(−34.4−31.9i)T2 |
| 53 | 1+(1.40−1.51i)T+(−3.96−52.8i)T2 |
| 59 | 1+(10.2−6.98i)T+(21.5−54.9i)T2 |
| 61 | 1+(−3.28−3.53i)T+(−4.55+60.8i)T2 |
| 67 | 1+(−1.75+3.03i)T+(−33.5−58.0i)T2 |
| 71 | 1+(−2.14−0.488i)T+(63.9+30.8i)T2 |
| 73 | 1+(−2.40+0.944i)T+(53.5−49.6i)T2 |
| 79 | 1+(6.85+11.8i)T+(−39.5+68.4i)T2 |
| 83 | 1+(−6.36+7.98i)T+(−18.4−80.9i)T2 |
| 89 | 1+(6.09+0.918i)T+(85.0+26.2i)T2 |
| 97 | 1+12.9iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.70146025750958625549283692101, −9.541044247890682092412729061550, −8.769900716762302066950266547180, −8.419583489011863423002726273955, −7.27022371449380771755221618026, −5.90078982340978292657216410645, −4.89572349644597279093651270102, −3.20395348988360544351836548425, −1.92978071778703070801923235688, −0.12032281567365684721157881906,
1.81473220747313354341853401198, 3.83569147160427350005410994147, 4.75112077650554837986533349982, 6.74057849630825829711197263278, 6.97522822187680867943563350358, 7.959287419123358532259025372401, 8.837838725647246162982332602305, 9.680399345055092292302688468890, 10.67588882277450267344921875630, 10.99405039485617480284896759952