L(s) = 1 | + (1.50 + 0.588i)2-s + (0.437 + 0.406i)4-s + (−3.18 − 2.16i)5-s + (2.37 − 1.17i)7-s + (−0.980 − 2.03i)8-s + (−3.49 − 5.12i)10-s + (−0.655 − 4.34i)11-s + (−3.43 + 2.74i)13-s + (4.24 − 0.363i)14-s + (−0.361 − 4.82i)16-s + (3.21 + 0.992i)17-s + (−0.776 + 0.448i)19-s + (−0.511 − 2.24i)20-s + (1.57 − 6.90i)22-s + (−0.732 − 2.37i)23-s + ⋯ |
L(s) = 1 | + (1.06 + 0.416i)2-s + (0.218 + 0.203i)4-s + (−1.42 − 0.969i)5-s + (0.896 − 0.443i)7-s + (−0.346 − 0.720i)8-s + (−1.10 − 1.62i)10-s + (−0.197 − 1.31i)11-s + (−0.953 + 0.760i)13-s + (1.13 − 0.0972i)14-s + (−0.0903 − 1.20i)16-s + (0.780 + 0.240i)17-s + (−0.178 + 0.102i)19-s + (−0.114 − 0.501i)20-s + (0.336 − 1.47i)22-s + (−0.152 − 0.494i)23-s + ⋯ |
Λ(s)=(=(441s/2ΓC(s)L(s)(0.239+0.971i)Λ(2−s)
Λ(s)=(=(441s/2ΓC(s+1/2)L(s)(0.239+0.971i)Λ(1−s)
Degree: |
2 |
Conductor: |
441
= 32⋅72
|
Sign: |
0.239+0.971i
|
Analytic conductor: |
3.52140 |
Root analytic conductor: |
1.87654 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ441(395,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 441, ( :1/2), 0.239+0.971i)
|
Particular Values
L(1) |
≈ |
1.29543−1.01522i |
L(21) |
≈ |
1.29543−1.01522i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 7 | 1+(−2.37+1.17i)T |
good | 2 | 1+(−1.50−0.588i)T+(1.46+1.36i)T2 |
| 5 | 1+(3.18+2.16i)T+(1.82+4.65i)T2 |
| 11 | 1+(0.655+4.34i)T+(−10.5+3.24i)T2 |
| 13 | 1+(3.43−2.74i)T+(2.89−12.6i)T2 |
| 17 | 1+(−3.21−0.992i)T+(14.0+9.57i)T2 |
| 19 | 1+(0.776−0.448i)T+(9.5−16.4i)T2 |
| 23 | 1+(0.732+2.37i)T+(−19.0+12.9i)T2 |
| 29 | 1+(−8.30+1.89i)T+(26.1−12.5i)T2 |
| 31 | 1+(−4.67−2.69i)T+(15.5+26.8i)T2 |
| 37 | 1+(−5.45+5.06i)T+(2.76−36.8i)T2 |
| 41 | 1+(5.36−2.58i)T+(25.5−32.0i)T2 |
| 43 | 1+(2.54+1.22i)T+(26.8+33.6i)T2 |
| 47 | 1+(−1.55+3.96i)T+(−34.4−31.9i)T2 |
| 53 | 1+(8.87−9.56i)T+(−3.96−52.8i)T2 |
| 59 | 1+(6.88−4.69i)T+(21.5−54.9i)T2 |
| 61 | 1+(−2.93−3.16i)T+(−4.55+60.8i)T2 |
| 67 | 1+(1.42−2.47i)T+(−33.5−58.0i)T2 |
| 71 | 1+(−7.30−1.66i)T+(63.9+30.8i)T2 |
| 73 | 1+(−3.88+1.52i)T+(53.5−49.6i)T2 |
| 79 | 1+(1.80+3.13i)T+(−39.5+68.4i)T2 |
| 83 | 1+(−8.34+10.4i)T+(−18.4−80.9i)T2 |
| 89 | 1+(3.95+0.596i)T+(85.0+26.2i)T2 |
| 97 | 1+18.1iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.32592880539812154930711562713, −10.13761240151840164347137895736, −8.769959909355701905043037376855, −8.109557190535243890210151642694, −7.23789840479000193314210045599, −5.97366651755077988109441585885, −4.75030235643802785458452282850, −4.45779719628557913354219840472, −3.30614709663208077857241777360, −0.77346800173218867094660964790,
2.44731730642310555427722273029, 3.32755174798230717932394957682, 4.56495107240327441967560016302, 5.05752568705339224910185911057, 6.63394743473228841639506698682, 7.85447699844047461381232011919, 8.073911635499423030574193019948, 9.797577612802556039967369420796, 10.76423283944870666013118001815, 11.66807583417981968786202190153