L(s) = 1 | + (−0.811 − 0.318i)2-s + (−0.908 − 0.843i)4-s + (0.228 + 0.155i)5-s + (−2.58 + 0.584i)7-s + (1.22 + 2.54i)8-s + (−0.135 − 0.199i)10-s + (0.640 + 4.25i)11-s + (3.73 − 2.98i)13-s + (2.28 + 0.347i)14-s + (0.00131 + 0.0176i)16-s + (5.10 + 1.57i)17-s + (1.61 − 0.930i)19-s + (−0.0764 − 0.334i)20-s + (0.833 − 3.65i)22-s + (0.312 + 1.01i)23-s + ⋯ |
L(s) = 1 | + (−0.573 − 0.225i)2-s + (−0.454 − 0.421i)4-s + (0.102 + 0.0697i)5-s + (−0.975 + 0.220i)7-s + (0.433 + 0.899i)8-s + (−0.0429 − 0.0630i)10-s + (0.193 + 1.28i)11-s + (1.03 − 0.826i)13-s + (0.609 + 0.0928i)14-s + (0.000329 + 0.00440i)16-s + (1.23 + 0.381i)17-s + (0.369 − 0.213i)19-s + (−0.0170 − 0.0748i)20-s + (0.177 − 0.778i)22-s + (0.0652 + 0.211i)23-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 441 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.994 - 0.107i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 441 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.994 - 0.107i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.868198 + 0.0468744i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.868198 + 0.0468744i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 7 | \( 1 + (2.58 - 0.584i)T \) |
good | 2 | \( 1 + (0.811 + 0.318i)T + (1.46 + 1.36i)T^{2} \) |
| 5 | \( 1 + (-0.228 - 0.155i)T + (1.82 + 4.65i)T^{2} \) |
| 11 | \( 1 + (-0.640 - 4.25i)T + (-10.5 + 3.24i)T^{2} \) |
| 13 | \( 1 + (-3.73 + 2.98i)T + (2.89 - 12.6i)T^{2} \) |
| 17 | \( 1 + (-5.10 - 1.57i)T + (14.0 + 9.57i)T^{2} \) |
| 19 | \( 1 + (-1.61 + 0.930i)T + (9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-0.312 - 1.01i)T + (-19.0 + 12.9i)T^{2} \) |
| 29 | \( 1 + (-3.23 + 0.737i)T + (26.1 - 12.5i)T^{2} \) |
| 31 | \( 1 + (-4.59 - 2.65i)T + (15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (5.88 - 5.46i)T + (2.76 - 36.8i)T^{2} \) |
| 41 | \( 1 + (-5.58 + 2.69i)T + (25.5 - 32.0i)T^{2} \) |
| 43 | \( 1 + (-9.74 - 4.69i)T + (26.8 + 33.6i)T^{2} \) |
| 47 | \( 1 + (3.78 - 9.64i)T + (-34.4 - 31.9i)T^{2} \) |
| 53 | \( 1 + (-2.18 + 2.35i)T + (-3.96 - 52.8i)T^{2} \) |
| 59 | \( 1 + (10.0 - 6.84i)T + (21.5 - 54.9i)T^{2} \) |
| 61 | \( 1 + (-5.45 - 5.88i)T + (-4.55 + 60.8i)T^{2} \) |
| 67 | \( 1 + (-3.64 + 6.32i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (-4.23 - 0.965i)T + (63.9 + 30.8i)T^{2} \) |
| 73 | \( 1 + (4.31 - 1.69i)T + (53.5 - 49.6i)T^{2} \) |
| 79 | \( 1 + (-1.86 - 3.22i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + (0.641 - 0.804i)T + (-18.4 - 80.9i)T^{2} \) |
| 89 | \( 1 + (15.0 + 2.26i)T + (85.0 + 26.2i)T^{2} \) |
| 97 | \( 1 + 10.6iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.78008779532617352696913766378, −10.04422836175059224210413620469, −9.590670012914396068280698976795, −8.563479747477411679496765387291, −7.67219915712716445344812076840, −6.36550230805970515800851718314, −5.53180375957216189832039643559, −4.27175242162663013624359366580, −2.86890127153711277467523019838, −1.18467220126356078468143564374,
0.868979418544816973011671512625, 3.26479514125089488407130257666, 3.94095866103809508792347013594, 5.58973264812282173132921054867, 6.54666230713029842391459552170, 7.53799795256729566962859136435, 8.529753418129927530529148365241, 9.217753878757298983625578971447, 9.943626441680640906544462483993, 10.98219075929003445428115648680