Properties

Label 2-21e2-147.101-c1-0-4
Degree 22
Conductor 441441
Sign 0.9940.107i0.994 - 0.107i
Analytic cond. 3.521403.52140
Root an. cond. 1.876541.87654
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.811 − 0.318i)2-s + (−0.908 − 0.843i)4-s + (0.228 + 0.155i)5-s + (−2.58 + 0.584i)7-s + (1.22 + 2.54i)8-s + (−0.135 − 0.199i)10-s + (0.640 + 4.25i)11-s + (3.73 − 2.98i)13-s + (2.28 + 0.347i)14-s + (0.00131 + 0.0176i)16-s + (5.10 + 1.57i)17-s + (1.61 − 0.930i)19-s + (−0.0764 − 0.334i)20-s + (0.833 − 3.65i)22-s + (0.312 + 1.01i)23-s + ⋯
L(s)  = 1  + (−0.573 − 0.225i)2-s + (−0.454 − 0.421i)4-s + (0.102 + 0.0697i)5-s + (−0.975 + 0.220i)7-s + (0.433 + 0.899i)8-s + (−0.0429 − 0.0630i)10-s + (0.193 + 1.28i)11-s + (1.03 − 0.826i)13-s + (0.609 + 0.0928i)14-s + (0.000329 + 0.00440i)16-s + (1.23 + 0.381i)17-s + (0.369 − 0.213i)19-s + (−0.0170 − 0.0748i)20-s + (0.177 − 0.778i)22-s + (0.0652 + 0.211i)23-s + ⋯

Functional equation

Λ(s)=(441s/2ΓC(s)L(s)=((0.9940.107i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 441 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.994 - 0.107i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(441s/2ΓC(s+1/2)L(s)=((0.9940.107i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 441 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.994 - 0.107i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 441441    =    32723^{2} \cdot 7^{2}
Sign: 0.9940.107i0.994 - 0.107i
Analytic conductor: 3.521403.52140
Root analytic conductor: 1.876541.87654
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ441(395,)\chi_{441} (395, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 441, ( :1/2), 0.9940.107i)(2,\ 441,\ (\ :1/2),\ 0.994 - 0.107i)

Particular Values

L(1)L(1) \approx 0.868198+0.0468744i0.868198 + 0.0468744i
L(12)L(\frac12) \approx 0.868198+0.0468744i0.868198 + 0.0468744i
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad3 1 1
7 1+(2.580.584i)T 1 + (2.58 - 0.584i)T
good2 1+(0.811+0.318i)T+(1.46+1.36i)T2 1 + (0.811 + 0.318i)T + (1.46 + 1.36i)T^{2}
5 1+(0.2280.155i)T+(1.82+4.65i)T2 1 + (-0.228 - 0.155i)T + (1.82 + 4.65i)T^{2}
11 1+(0.6404.25i)T+(10.5+3.24i)T2 1 + (-0.640 - 4.25i)T + (-10.5 + 3.24i)T^{2}
13 1+(3.73+2.98i)T+(2.8912.6i)T2 1 + (-3.73 + 2.98i)T + (2.89 - 12.6i)T^{2}
17 1+(5.101.57i)T+(14.0+9.57i)T2 1 + (-5.10 - 1.57i)T + (14.0 + 9.57i)T^{2}
19 1+(1.61+0.930i)T+(9.516.4i)T2 1 + (-1.61 + 0.930i)T + (9.5 - 16.4i)T^{2}
23 1+(0.3121.01i)T+(19.0+12.9i)T2 1 + (-0.312 - 1.01i)T + (-19.0 + 12.9i)T^{2}
29 1+(3.23+0.737i)T+(26.112.5i)T2 1 + (-3.23 + 0.737i)T + (26.1 - 12.5i)T^{2}
31 1+(4.592.65i)T+(15.5+26.8i)T2 1 + (-4.59 - 2.65i)T + (15.5 + 26.8i)T^{2}
37 1+(5.885.46i)T+(2.7636.8i)T2 1 + (5.88 - 5.46i)T + (2.76 - 36.8i)T^{2}
41 1+(5.58+2.69i)T+(25.532.0i)T2 1 + (-5.58 + 2.69i)T + (25.5 - 32.0i)T^{2}
43 1+(9.744.69i)T+(26.8+33.6i)T2 1 + (-9.74 - 4.69i)T + (26.8 + 33.6i)T^{2}
47 1+(3.789.64i)T+(34.431.9i)T2 1 + (3.78 - 9.64i)T + (-34.4 - 31.9i)T^{2}
53 1+(2.18+2.35i)T+(3.9652.8i)T2 1 + (-2.18 + 2.35i)T + (-3.96 - 52.8i)T^{2}
59 1+(10.06.84i)T+(21.554.9i)T2 1 + (10.0 - 6.84i)T + (21.5 - 54.9i)T^{2}
61 1+(5.455.88i)T+(4.55+60.8i)T2 1 + (-5.45 - 5.88i)T + (-4.55 + 60.8i)T^{2}
67 1+(3.64+6.32i)T+(33.558.0i)T2 1 + (-3.64 + 6.32i)T + (-33.5 - 58.0i)T^{2}
71 1+(4.230.965i)T+(63.9+30.8i)T2 1 + (-4.23 - 0.965i)T + (63.9 + 30.8i)T^{2}
73 1+(4.311.69i)T+(53.549.6i)T2 1 + (4.31 - 1.69i)T + (53.5 - 49.6i)T^{2}
79 1+(1.863.22i)T+(39.5+68.4i)T2 1 + (-1.86 - 3.22i)T + (-39.5 + 68.4i)T^{2}
83 1+(0.6410.804i)T+(18.480.9i)T2 1 + (0.641 - 0.804i)T + (-18.4 - 80.9i)T^{2}
89 1+(15.0+2.26i)T+(85.0+26.2i)T2 1 + (15.0 + 2.26i)T + (85.0 + 26.2i)T^{2}
97 1+10.6iT97T2 1 + 10.6iT - 97T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−10.78008779532617352696913766378, −10.04422836175059224210413620469, −9.590670012914396068280698976795, −8.563479747477411679496765387291, −7.67219915712716445344812076840, −6.36550230805970515800851718314, −5.53180375957216189832039643559, −4.27175242162663013624359366580, −2.86890127153711277467523019838, −1.18467220126356078468143564374, 0.868979418544816973011671512625, 3.26479514125089488407130257666, 3.94095866103809508792347013594, 5.58973264812282173132921054867, 6.54666230713029842391459552170, 7.53799795256729566962859136435, 8.529753418129927530529148365241, 9.217753878757298983625578971447, 9.943626441680640906544462483993, 10.98219075929003445428115648680

Graph of the ZZ-function along the critical line