L(s) = 1 | + (1.22 + 0.707i)2-s + (0.499 + 0.866i)4-s + (−1.22 + 0.707i)11-s + (0.499 − 0.866i)16-s − 2·22-s + (−1.22 − 0.707i)23-s + (−0.5 − 0.866i)25-s + 1.41i·29-s + (1.22 − 0.707i)32-s + (−1.22 − 0.707i)44-s + (−0.999 − 1.73i)46-s − 1.41i·50-s + (1.22 − 0.707i)53-s + (−1.00 + 1.73i)58-s + 0.999·64-s + ⋯ |
L(s) = 1 | + (1.22 + 0.707i)2-s + (0.499 + 0.866i)4-s + (−1.22 + 0.707i)11-s + (0.499 − 0.866i)16-s − 2·22-s + (−1.22 − 0.707i)23-s + (−0.5 − 0.866i)25-s + 1.41i·29-s + (1.22 − 0.707i)32-s + (−1.22 − 0.707i)44-s + (−0.999 − 1.73i)46-s − 1.41i·50-s + (1.22 − 0.707i)53-s + (−1.00 + 1.73i)58-s + 0.999·64-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 441 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.675 - 0.736i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 441 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.675 - 0.736i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.441505518\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.441505518\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 7 | \( 1 \) |
good | 2 | \( 1 + (-1.22 - 0.707i)T + (0.5 + 0.866i)T^{2} \) |
| 5 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 11 | \( 1 + (1.22 - 0.707i)T + (0.5 - 0.866i)T^{2} \) |
| 13 | \( 1 + T^{2} \) |
| 17 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 19 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 23 | \( 1 + (1.22 + 0.707i)T + (0.5 + 0.866i)T^{2} \) |
| 29 | \( 1 - 1.41iT - T^{2} \) |
| 31 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 37 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 41 | \( 1 - T^{2} \) |
| 43 | \( 1 + T^{2} \) |
| 47 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 53 | \( 1 + (-1.22 + 0.707i)T + (0.5 - 0.866i)T^{2} \) |
| 59 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 61 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 67 | \( 1 + (-1 - 1.73i)T + (-0.5 + 0.866i)T^{2} \) |
| 71 | \( 1 + 1.41iT - T^{2} \) |
| 73 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 79 | \( 1 + (1 - 1.73i)T + (-0.5 - 0.866i)T^{2} \) |
| 83 | \( 1 - T^{2} \) |
| 89 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 97 | \( 1 + T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.84052208846762375279621408714, −10.49103574622163080226566462596, −9.864992801402636931402749329696, −8.427010539387864622455064897460, −7.51647339343988795042853942915, −6.65004984613259944318897430329, −5.63783728162440250647776145816, −4.83744785579779234334522478818, −3.86931961490569081585999189777, −2.47891726023275405362271729690,
2.14017190261486800664524466824, 3.25394871834383751516281348352, 4.24701759009354368989110402291, 5.41790831006616825823780459578, 5.99673600071139469592678931300, 7.59703851389044336707338211636, 8.385762160058102779869942834926, 9.750816994845927112963944443200, 10.63406120038908678855810746401, 11.43467133037809501503769290651