L(s) = 1 | + (1.22 + 0.707i)2-s + (0.499 + 0.866i)4-s + (−1.22 + 0.707i)11-s + (0.499 − 0.866i)16-s − 2·22-s + (−1.22 − 0.707i)23-s + (−0.5 − 0.866i)25-s + 1.41i·29-s + (1.22 − 0.707i)32-s + (−1.22 − 0.707i)44-s + (−0.999 − 1.73i)46-s − 1.41i·50-s + (1.22 − 0.707i)53-s + (−1.00 + 1.73i)58-s + 0.999·64-s + ⋯ |
L(s) = 1 | + (1.22 + 0.707i)2-s + (0.499 + 0.866i)4-s + (−1.22 + 0.707i)11-s + (0.499 − 0.866i)16-s − 2·22-s + (−1.22 − 0.707i)23-s + (−0.5 − 0.866i)25-s + 1.41i·29-s + (1.22 − 0.707i)32-s + (−1.22 − 0.707i)44-s + (−0.999 − 1.73i)46-s − 1.41i·50-s + (1.22 − 0.707i)53-s + (−1.00 + 1.73i)58-s + 0.999·64-s + ⋯ |
Λ(s)=(=(441s/2ΓC(s)L(s)(0.675−0.736i)Λ(1−s)
Λ(s)=(=(441s/2ΓC(s)L(s)(0.675−0.736i)Λ(1−s)
Degree: |
2 |
Conductor: |
441
= 32⋅72
|
Sign: |
0.675−0.736i
|
Analytic conductor: |
0.220087 |
Root analytic conductor: |
0.469135 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ441(422,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 441, ( :0), 0.675−0.736i)
|
Particular Values
L(21) |
≈ |
1.441505518 |
L(21) |
≈ |
1.441505518 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 7 | 1 |
good | 2 | 1+(−1.22−0.707i)T+(0.5+0.866i)T2 |
| 5 | 1+(0.5+0.866i)T2 |
| 11 | 1+(1.22−0.707i)T+(0.5−0.866i)T2 |
| 13 | 1+T2 |
| 17 | 1+(0.5−0.866i)T2 |
| 19 | 1+(−0.5−0.866i)T2 |
| 23 | 1+(1.22+0.707i)T+(0.5+0.866i)T2 |
| 29 | 1−1.41iT−T2 |
| 31 | 1+(−0.5+0.866i)T2 |
| 37 | 1+(−0.5−0.866i)T2 |
| 41 | 1−T2 |
| 43 | 1+T2 |
| 47 | 1+(0.5+0.866i)T2 |
| 53 | 1+(−1.22+0.707i)T+(0.5−0.866i)T2 |
| 59 | 1+(0.5−0.866i)T2 |
| 61 | 1+(−0.5−0.866i)T2 |
| 67 | 1+(−1−1.73i)T+(−0.5+0.866i)T2 |
| 71 | 1+1.41iT−T2 |
| 73 | 1+(−0.5+0.866i)T2 |
| 79 | 1+(1−1.73i)T+(−0.5−0.866i)T2 |
| 83 | 1−T2 |
| 89 | 1+(0.5+0.866i)T2 |
| 97 | 1+T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.84052208846762375279621408714, −10.49103574622163080226566462596, −9.864992801402636931402749329696, −8.427010539387864622455064897460, −7.51647339343988795042853942915, −6.65004984613259944318897430329, −5.63783728162440250647776145816, −4.83744785579779234334522478818, −3.86931961490569081585999189777, −2.47891726023275405362271729690,
2.14017190261486800664524466824, 3.25394871834383751516281348352, 4.24701759009354368989110402291, 5.41790831006616825823780459578, 5.99673600071139469592678931300, 7.59703851389044336707338211636, 8.385762160058102779869942834926, 9.750816994845927112963944443200, 10.63406120038908678855810746401, 11.43467133037809501503769290651