L(s) = 1 | + (0.5 + 0.866i)4-s + (−0.499 + 0.866i)16-s + (−0.5 − 0.866i)25-s + (1 − 1.73i)37-s − 2·43-s − 0.999·64-s + (−1 − 1.73i)67-s + (−1 + 1.73i)79-s + (0.499 − 0.866i)100-s + (1 + 1.73i)109-s + ⋯ |
L(s) = 1 | + (0.5 + 0.866i)4-s + (−0.499 + 0.866i)16-s + (−0.5 − 0.866i)25-s + (1 − 1.73i)37-s − 2·43-s − 0.999·64-s + (−1 − 1.73i)67-s + (−1 + 1.73i)79-s + (0.499 − 0.866i)100-s + (1 + 1.73i)109-s + ⋯ |
Λ(s)=(=(441s/2ΓC(s)L(s)(0.832−0.553i)Λ(1−s)
Λ(s)=(=(441s/2ΓC(s)L(s)(0.832−0.553i)Λ(1−s)
Degree: |
2 |
Conductor: |
441
= 32⋅72
|
Sign: |
0.832−0.553i
|
Analytic conductor: |
0.220087 |
Root analytic conductor: |
0.469135 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ441(19,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 441, ( :0), 0.832−0.553i)
|
Particular Values
L(21) |
≈ |
0.9293990399 |
L(21) |
≈ |
0.9293990399 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 7 | 1 |
good | 2 | 1+(−0.5−0.866i)T2 |
| 5 | 1+(0.5+0.866i)T2 |
| 11 | 1+(−0.5+0.866i)T2 |
| 13 | 1−T2 |
| 17 | 1+(0.5−0.866i)T2 |
| 19 | 1+(0.5+0.866i)T2 |
| 23 | 1+(−0.5−0.866i)T2 |
| 29 | 1+T2 |
| 31 | 1+(0.5−0.866i)T2 |
| 37 | 1+(−1+1.73i)T+(−0.5−0.866i)T2 |
| 41 | 1−T2 |
| 43 | 1+2T+T2 |
| 47 | 1+(0.5+0.866i)T2 |
| 53 | 1+(−0.5+0.866i)T2 |
| 59 | 1+(0.5−0.866i)T2 |
| 61 | 1+(0.5+0.866i)T2 |
| 67 | 1+(1+1.73i)T+(−0.5+0.866i)T2 |
| 71 | 1+T2 |
| 73 | 1+(0.5−0.866i)T2 |
| 79 | 1+(1−1.73i)T+(−0.5−0.866i)T2 |
| 83 | 1−T2 |
| 89 | 1+(0.5+0.866i)T2 |
| 97 | 1−T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.49438970359066473817352013659, −10.67421072164152299370820510375, −9.609722008000977215470084698991, −8.549787287379746596472714024378, −7.78623839517945642711281070580, −6.87834066262158608905266997488, −5.90646054431188370473342496616, −4.48029662965645927091740316497, −3.39923831260526179066932882330, −2.16617937203495717213378069952,
1.60038641080423647027116313974, 3.05249497320041956745119721480, 4.61122384632602001394216453963, 5.63467893600201756616122681466, 6.52676742060248642637602831359, 7.45134713216296716150282292034, 8.591224729354076119968779401602, 9.698700915356889802984301980440, 10.26463573503206159132979439772, 11.33626292852082760209850477605