L(s) = 1 | + (0.5 + 0.866i)4-s + (−0.499 + 0.866i)16-s + (−0.5 − 0.866i)25-s + (1 − 1.73i)37-s − 2·43-s − 0.999·64-s + (−1 − 1.73i)67-s + (−1 + 1.73i)79-s + (0.499 − 0.866i)100-s + (1 + 1.73i)109-s + ⋯ |
L(s) = 1 | + (0.5 + 0.866i)4-s + (−0.499 + 0.866i)16-s + (−0.5 − 0.866i)25-s + (1 − 1.73i)37-s − 2·43-s − 0.999·64-s + (−1 − 1.73i)67-s + (−1 + 1.73i)79-s + (0.499 − 0.866i)100-s + (1 + 1.73i)109-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 441 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.832 - 0.553i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 441 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.832 - 0.553i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.9293990399\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9293990399\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 \) |
| 7 | \( 1 \) |
good | 2 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 5 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 11 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 13 | \( 1 - T^{2} \) |
| 17 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 19 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 23 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 29 | \( 1 + T^{2} \) |
| 31 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 37 | \( 1 + (-1 + 1.73i)T + (-0.5 - 0.866i)T^{2} \) |
| 41 | \( 1 - T^{2} \) |
| 43 | \( 1 + 2T + T^{2} \) |
| 47 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 53 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 59 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 61 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 67 | \( 1 + (1 + 1.73i)T + (-0.5 + 0.866i)T^{2} \) |
| 71 | \( 1 + T^{2} \) |
| 73 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 79 | \( 1 + (1 - 1.73i)T + (-0.5 - 0.866i)T^{2} \) |
| 83 | \( 1 - T^{2} \) |
| 89 | \( 1 + (0.5 + 0.866i)T^{2} \) |
| 97 | \( 1 - T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−11.49438970359066473817352013659, −10.67421072164152299370820510375, −9.609722008000977215470084698991, −8.549787287379746596472714024378, −7.78623839517945642711281070580, −6.87834066262158608905266997488, −5.90646054431188370473342496616, −4.48029662965645927091740316497, −3.39923831260526179066932882330, −2.16617937203495717213378069952,
1.60038641080423647027116313974, 3.05249497320041956745119721480, 4.61122384632602001394216453963, 5.63467893600201756616122681466, 6.52676742060248642637602831359, 7.45134713216296716150282292034, 8.591224729354076119968779401602, 9.698700915356889802984301980440, 10.26463573503206159132979439772, 11.33626292852082760209850477605