L(s) = 1 | + (3.31 − 2.40i)3-s + (−0.690 − 2.12i)5-s + (3.59 − 4.95i)7-s + (2.39 − 7.37i)9-s + (−9.98 − 4.62i)11-s + (5.95 + 1.93i)13-s + (−7.40 − 5.37i)15-s + (12.0 − 3.91i)17-s + (1.94 + 2.67i)19-s − 25.0i·21-s − 15.1·23-s + (−4.04 + 2.93i)25-s + (1.57 + 4.86i)27-s + (3.04 − 4.18i)29-s + (1.12 − 3.46i)31-s + ⋯ |
L(s) = 1 | + (1.10 − 0.801i)3-s + (−0.138 − 0.425i)5-s + (0.514 − 0.707i)7-s + (0.266 − 0.819i)9-s + (−0.907 − 0.420i)11-s + (0.458 + 0.148i)13-s + (−0.493 − 0.358i)15-s + (0.708 − 0.230i)17-s + (0.102 + 0.140i)19-s − 1.19i·21-s − 0.658·23-s + (−0.161 + 0.117i)25-s + (0.0584 + 0.180i)27-s + (0.104 − 0.144i)29-s + (0.0363 − 0.111i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 220 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.171 + 0.985i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 220 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.171 + 0.985i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(1.64533 - 1.38354i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.64533 - 1.38354i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (0.690 + 2.12i)T \) |
| 11 | \( 1 + (9.98 + 4.62i)T \) |
good | 3 | \( 1 + (-3.31 + 2.40i)T + (2.78 - 8.55i)T^{2} \) |
| 7 | \( 1 + (-3.59 + 4.95i)T + (-15.1 - 46.6i)T^{2} \) |
| 13 | \( 1 + (-5.95 - 1.93i)T + (136. + 99.3i)T^{2} \) |
| 17 | \( 1 + (-12.0 + 3.91i)T + (233. - 169. i)T^{2} \) |
| 19 | \( 1 + (-1.94 - 2.67i)T + (-111. + 343. i)T^{2} \) |
| 23 | \( 1 + 15.1T + 529T^{2} \) |
| 29 | \( 1 + (-3.04 + 4.18i)T + (-259. - 799. i)T^{2} \) |
| 31 | \( 1 + (-1.12 + 3.46i)T + (-777. - 564. i)T^{2} \) |
| 37 | \( 1 + (-58.1 - 42.2i)T + (423. + 1.30e3i)T^{2} \) |
| 41 | \( 1 + (9.53 + 13.1i)T + (-519. + 1.59e3i)T^{2} \) |
| 43 | \( 1 + 42.6iT - 1.84e3T^{2} \) |
| 47 | \( 1 + (-26.4 + 19.2i)T + (682. - 2.10e3i)T^{2} \) |
| 53 | \( 1 + (13.7 - 42.2i)T + (-2.27e3 - 1.65e3i)T^{2} \) |
| 59 | \( 1 + (-41.8 - 30.3i)T + (1.07e3 + 3.31e3i)T^{2} \) |
| 61 | \( 1 + (24.6 - 7.99i)T + (3.01e3 - 2.18e3i)T^{2} \) |
| 67 | \( 1 - 2.46T + 4.48e3T^{2} \) |
| 71 | \( 1 + (-30.8 - 95.0i)T + (-4.07e3 + 2.96e3i)T^{2} \) |
| 73 | \( 1 + (85.0 - 117. i)T + (-1.64e3 - 5.06e3i)T^{2} \) |
| 79 | \( 1 + (-112. - 36.4i)T + (5.04e3 + 3.66e3i)T^{2} \) |
| 83 | \( 1 + (73.5 - 23.8i)T + (5.57e3 - 4.04e3i)T^{2} \) |
| 89 | \( 1 + 139.T + 7.92e3T^{2} \) |
| 97 | \( 1 + (21.7 - 67.0i)T + (-7.61e3 - 5.53e3i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.01772481218378968948802480337, −10.89071472509620553651903502864, −9.780926998634614157423662430408, −8.482348834559651278260233301950, −7.988883571177958406041247274660, −7.14180335779856342504025457249, −5.59009416082309897093933904005, −4.09503403416792068761678788522, −2.71089974741665984231585957991, −1.18200970479244797942842150445,
2.31668758197121040118678882664, 3.40301133812078036699417494964, 4.67428290399341980847504235858, 5.95788922597697799552314204981, 7.67483941261083086989547412559, 8.302526765890833847400836067464, 9.359114058291457889929959694933, 10.18022229174306059933380270733, 11.13396928965171396780971343827, 12.28302267247584980002809038502