L(s) = 1 | + (−1.08 + 3.34i)3-s + (1.80 − 1.31i)5-s + (−6.54 + 2.12i)7-s + (−2.72 − 1.97i)9-s + (−1.85 + 10.8i)11-s + (−6.20 + 8.54i)13-s + (2.42 + 7.47i)15-s + (−14.5 − 19.9i)17-s + (−2.90 − 0.944i)19-s − 24.2i·21-s − 28.7·23-s + (1.54 − 4.75i)25-s + (−16.0 + 11.6i)27-s + (−14.4 + 4.70i)29-s + (22.8 + 16.6i)31-s + ⋯ |
L(s) = 1 | + (−0.362 + 1.11i)3-s + (0.361 − 0.262i)5-s + (−0.935 + 0.303i)7-s + (−0.302 − 0.219i)9-s + (−0.168 + 0.985i)11-s + (−0.477 + 0.657i)13-s + (0.161 + 0.498i)15-s + (−0.853 − 1.17i)17-s + (−0.153 − 0.0497i)19-s − 1.15i·21-s − 1.25·23-s + (0.0618 − 0.190i)25-s + (−0.593 + 0.431i)27-s + (−0.499 + 0.162i)29-s + (0.738 + 0.536i)31-s + ⋯ |
Λ(s)=(=(220s/2ΓC(s)L(s)(−0.971−0.236i)Λ(3−s)
Λ(s)=(=(220s/2ΓC(s+1)L(s)(−0.971−0.236i)Λ(1−s)
Degree: |
2 |
Conductor: |
220
= 22⋅5⋅11
|
Sign: |
−0.971−0.236i
|
Analytic conductor: |
5.99456 |
Root analytic conductor: |
2.44838 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ220(161,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 220, ( :1), −0.971−0.236i)
|
Particular Values
L(23) |
≈ |
0.0899299+0.748364i |
L(21) |
≈ |
0.0899299+0.748364i |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1+(−1.80+1.31i)T |
| 11 | 1+(1.85−10.8i)T |
good | 3 | 1+(1.08−3.34i)T+(−7.28−5.29i)T2 |
| 7 | 1+(6.54−2.12i)T+(39.6−28.8i)T2 |
| 13 | 1+(6.20−8.54i)T+(−52.2−160.i)T2 |
| 17 | 1+(14.5+19.9i)T+(−89.3+274.i)T2 |
| 19 | 1+(2.90+0.944i)T+(292.+212.i)T2 |
| 23 | 1+28.7T+529T2 |
| 29 | 1+(14.4−4.70i)T+(680.−494.i)T2 |
| 31 | 1+(−22.8−16.6i)T+(296.+913.i)T2 |
| 37 | 1+(0.847+2.60i)T+(−1.10e3+804.i)T2 |
| 41 | 1+(−58.6−19.0i)T+(1.35e3+988.i)T2 |
| 43 | 1−40.5iT−1.84e3T2 |
| 47 | 1+(−7.00+21.5i)T+(−1.78e3−1.29e3i)T2 |
| 53 | 1+(−69.9−50.8i)T+(868.+2.67e3i)T2 |
| 59 | 1+(−22.7−70.1i)T+(−2.81e3+2.04e3i)T2 |
| 61 | 1+(34.2+47.1i)T+(−1.14e3+3.53e3i)T2 |
| 67 | 1−64.6T+4.48e3T2 |
| 71 | 1+(−49.4+35.9i)T+(1.55e3−4.79e3i)T2 |
| 73 | 1+(80.2−26.0i)T+(4.31e3−3.13e3i)T2 |
| 79 | 1+(44.8−61.7i)T+(−1.92e3−5.93e3i)T2 |
| 83 | 1+(11.1+15.2i)T+(−2.12e3+6.55e3i)T2 |
| 89 | 1−127.T+7.92e3T2 |
| 97 | 1+(−71.6−52.0i)T+(2.90e3+8.94e3i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.42379773502182527248776974467, −11.50039546796559675203740811348, −10.30036224972609564783318741150, −9.639728843558179518731744330736, −9.077763667478264109541978473134, −7.36560450364445617277856966645, −6.22288993831659602584989354865, −4.97930615329424284221507119874, −4.17451400514341963007251869338, −2.44038482446670441936589880759,
0.40749603546298301948403356511, 2.24832094433324393884940285935, 3.80656936747260255670372073061, 5.83968630792547546966490594910, 6.35097026063500771315932683938, 7.41741293294075849502207595229, 8.445462617608429071025704391246, 9.819338775015604086925921171295, 10.65488336558283956703400403032, 11.75972917665926412346251118152