L(s) = 1 | + (0.486 − 1.49i)3-s + (1.80 − 1.31i)5-s + (−2.66 + 0.866i)7-s + (5.27 + 3.83i)9-s + (8.69 − 6.73i)11-s + (11.7 − 16.1i)13-s + (−1.08 − 3.34i)15-s + (−6.11 − 8.41i)17-s + (−14.5 − 4.71i)19-s + 4.41i·21-s − 9.47·23-s + (1.54 − 4.75i)25-s + (19.7 − 14.3i)27-s + (29.9 − 9.72i)29-s + (8.91 + 6.48i)31-s + ⋯ |
L(s) = 1 | + (0.162 − 0.498i)3-s + (0.361 − 0.262i)5-s + (−0.380 + 0.123i)7-s + (0.586 + 0.425i)9-s + (0.790 − 0.612i)11-s + (0.903 − 1.24i)13-s + (−0.0725 − 0.223i)15-s + (−0.359 − 0.495i)17-s + (−0.763 − 0.248i)19-s + 0.210i·21-s − 0.412·23-s + (0.0618 − 0.190i)25-s + (0.732 − 0.531i)27-s + (1.03 − 0.335i)29-s + (0.287 + 0.209i)31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 220 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.555 + 0.831i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 220 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.555 + 0.831i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(1.56769 - 0.837831i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.56769 - 0.837831i\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 5 | \( 1 + (-1.80 + 1.31i)T \) |
| 11 | \( 1 + (-8.69 + 6.73i)T \) |
good | 3 | \( 1 + (-0.486 + 1.49i)T + (-7.28 - 5.29i)T^{2} \) |
| 7 | \( 1 + (2.66 - 0.866i)T + (39.6 - 28.8i)T^{2} \) |
| 13 | \( 1 + (-11.7 + 16.1i)T + (-52.2 - 160. i)T^{2} \) |
| 17 | \( 1 + (6.11 + 8.41i)T + (-89.3 + 274. i)T^{2} \) |
| 19 | \( 1 + (14.5 + 4.71i)T + (292. + 212. i)T^{2} \) |
| 23 | \( 1 + 9.47T + 529T^{2} \) |
| 29 | \( 1 + (-29.9 + 9.72i)T + (680. - 494. i)T^{2} \) |
| 31 | \( 1 + (-8.91 - 6.48i)T + (296. + 913. i)T^{2} \) |
| 37 | \( 1 + (-5.25 - 16.1i)T + (-1.10e3 + 804. i)T^{2} \) |
| 41 | \( 1 + (-20.2 - 6.57i)T + (1.35e3 + 988. i)T^{2} \) |
| 43 | \( 1 + 31.6iT - 1.84e3T^{2} \) |
| 47 | \( 1 + (24.8 - 76.4i)T + (-1.78e3 - 1.29e3i)T^{2} \) |
| 53 | \( 1 + (20.0 + 14.5i)T + (868. + 2.67e3i)T^{2} \) |
| 59 | \( 1 + (-17.3 - 53.5i)T + (-2.81e3 + 2.04e3i)T^{2} \) |
| 61 | \( 1 + (-63.7 - 87.7i)T + (-1.14e3 + 3.53e3i)T^{2} \) |
| 67 | \( 1 + 46.4T + 4.48e3T^{2} \) |
| 71 | \( 1 + (100. - 73.1i)T + (1.55e3 - 4.79e3i)T^{2} \) |
| 73 | \( 1 + (-68.5 + 22.2i)T + (4.31e3 - 3.13e3i)T^{2} \) |
| 79 | \( 1 + (13.8 - 19.0i)T + (-1.92e3 - 5.93e3i)T^{2} \) |
| 83 | \( 1 + (53.1 + 73.1i)T + (-2.12e3 + 6.55e3i)T^{2} \) |
| 89 | \( 1 + 32.7T + 7.92e3T^{2} \) |
| 97 | \( 1 + (-141. - 102. i)T + (2.90e3 + 8.94e3i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.06533665902709290337209984801, −10.89137848299368771925774062810, −9.993160071179339568340435601913, −8.812600125998483508391382891019, −8.026265284960473161705390675380, −6.70277240320703914639663474206, −5.86628627248063063567155138939, −4.37376555881255639784126871618, −2.81342781870855316655188698518, −1.11981098770261820291371885842,
1.75962102442548852314490686115, 3.67415992569808480698762375598, 4.48242396732470774410814437199, 6.34167527255720959813925480615, 6.80548628651854089371832477898, 8.497201937083234351672761494717, 9.414766839561091579816116133069, 10.10962297353996702608535465411, 11.14610047969378062006552629711, 12.23074238837117137918573120281