L(s) = 1 | + (1.59 − 4.90i)3-s + (−1.80 + 1.31i)5-s + (−9.66 + 3.13i)7-s + (−14.2 − 10.3i)9-s + (−1.51 − 10.8i)11-s + (−1.96 + 2.70i)13-s + (3.56 + 10.9i)15-s + (−11.8 − 16.3i)17-s + (−5.26 − 1.70i)19-s + 52.3i·21-s + 34.6·23-s + (1.54 − 4.75i)25-s + (−35.9 + 26.1i)27-s + (−42.6 + 13.8i)29-s + (35.0 + 25.4i)31-s + ⋯ |
L(s) = 1 | + (0.531 − 1.63i)3-s + (−0.361 + 0.262i)5-s + (−1.38 + 0.448i)7-s + (−1.58 − 1.15i)9-s + (−0.137 − 0.990i)11-s + (−0.151 + 0.208i)13-s + (0.237 + 0.731i)15-s + (−0.697 − 0.960i)17-s + (−0.276 − 0.0899i)19-s + 2.49i·21-s + 1.50·23-s + (0.0618 − 0.190i)25-s + (−1.33 + 0.967i)27-s + (−1.47 + 0.478i)29-s + (1.13 + 0.821i)31-s + ⋯ |
Λ(s)=(=(220s/2ΓC(s)L(s)(−0.997+0.0682i)Λ(3−s)
Λ(s)=(=(220s/2ΓC(s+1)L(s)(−0.997+0.0682i)Λ(1−s)
Degree: |
2 |
Conductor: |
220
= 22⋅5⋅11
|
Sign: |
−0.997+0.0682i
|
Analytic conductor: |
5.99456 |
Root analytic conductor: |
2.44838 |
Motivic weight: |
2 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ220(161,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 220, ( :1), −0.997+0.0682i)
|
Particular Values
L(23) |
≈ |
0.0307434−0.900053i |
L(21) |
≈ |
0.0307434−0.900053i |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1+(1.80−1.31i)T |
| 11 | 1+(1.51+10.8i)T |
good | 3 | 1+(−1.59+4.90i)T+(−7.28−5.29i)T2 |
| 7 | 1+(9.66−3.13i)T+(39.6−28.8i)T2 |
| 13 | 1+(1.96−2.70i)T+(−52.2−160.i)T2 |
| 17 | 1+(11.8+16.3i)T+(−89.3+274.i)T2 |
| 19 | 1+(5.26+1.70i)T+(292.+212.i)T2 |
| 23 | 1−34.6T+529T2 |
| 29 | 1+(42.6−13.8i)T+(680.−494.i)T2 |
| 31 | 1+(−35.0−25.4i)T+(296.+913.i)T2 |
| 37 | 1+(18.3+56.4i)T+(−1.10e3+804.i)T2 |
| 41 | 1+(−31.4−10.2i)T+(1.35e3+988.i)T2 |
| 43 | 1+65.3iT−1.84e3T2 |
| 47 | 1+(−21.2+65.4i)T+(−1.78e3−1.29e3i)T2 |
| 53 | 1+(−2.60−1.89i)T+(868.+2.67e3i)T2 |
| 59 | 1+(−20.4−62.7i)T+(−2.81e3+2.04e3i)T2 |
| 61 | 1+(27.8+38.3i)T+(−1.14e3+3.53e3i)T2 |
| 67 | 1+31.6T+4.48e3T2 |
| 71 | 1+(3.04−2.21i)T+(1.55e3−4.79e3i)T2 |
| 73 | 1+(−21.3+6.92i)T+(4.31e3−3.13e3i)T2 |
| 79 | 1+(45.9−63.2i)T+(−1.92e3−5.93e3i)T2 |
| 83 | 1+(−13.0−17.9i)T+(−2.12e3+6.55e3i)T2 |
| 89 | 1−68.2T+7.92e3T2 |
| 97 | 1+(49.7+36.1i)T+(2.90e3+8.94e3i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.87607019457032770446411850609, −10.84876907416488868999299067205, −9.177000852099654230605705394741, −8.658788354823533217882761788259, −7.23201988598608559329256400971, −6.81049906599984980476043385554, −5.67826082952489845059350479843, −3.36172093025384440815976477627, −2.47668865785485053276894684458, −0.44189440520618971610213197338,
2.89026941993046505290419078596, 3.97868860692315592050671687362, 4.76226564840442262394003692172, 6.31405260823126374577265091212, 7.71601481030485966094342774214, 8.964170056922250568273295013790, 9.656074836148478003387740469409, 10.32865402230244894089653105657, 11.24986825301565995443924783381, 12.73756668243342909435661654800