Properties

Label 2-220-20.19-c2-0-13
Degree 22
Conductor 220220
Sign 0.8930.448i-0.893 - 0.448i
Analytic cond. 5.994565.99456
Root an. cond. 2.448382.44838
Motivic weight 22
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (1.87 + 0.695i)2-s − 2.63·3-s + (3.03 + 2.60i)4-s + (1.21 + 4.84i)5-s + (−4.93 − 1.83i)6-s − 12.3·7-s + (3.86 + 7.00i)8-s − 2.07·9-s + (−1.09 + 9.93i)10-s − 3.31i·11-s + (−7.97 − 6.86i)12-s − 4.53i·13-s + (−23.1 − 8.57i)14-s + (−3.19 − 12.7i)15-s + (2.38 + 15.8i)16-s + 12.6i·17-s + ⋯
L(s)  = 1  + (0.937 + 0.347i)2-s − 0.877·3-s + (0.757 + 0.652i)4-s + (0.243 + 0.969i)5-s + (−0.822 − 0.305i)6-s − 1.76·7-s + (0.483 + 0.875i)8-s − 0.230·9-s + (−0.109 + 0.993i)10-s − 0.301i·11-s + (−0.664 − 0.572i)12-s − 0.348i·13-s + (−1.65 − 0.612i)14-s + (−0.213 − 0.850i)15-s + (0.148 + 0.988i)16-s + 0.743i·17-s + ⋯

Functional equation

Λ(s)=(220s/2ΓC(s)L(s)=((0.8930.448i)Λ(3s)\begin{aligned}\Lambda(s)=\mathstrut & 220 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.893 - 0.448i)\, \overline{\Lambda}(3-s) \end{aligned}
Λ(s)=(220s/2ΓC(s+1)L(s)=((0.8930.448i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 220 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.893 - 0.448i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 220220    =    225112^{2} \cdot 5 \cdot 11
Sign: 0.8930.448i-0.893 - 0.448i
Analytic conductor: 5.994565.99456
Root analytic conductor: 2.448382.44838
Motivic weight: 22
Rational: no
Arithmetic: yes
Character: χ220(199,)\chi_{220} (199, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 220, ( :1), 0.8930.448i)(2,\ 220,\ (\ :1),\ -0.893 - 0.448i)

Particular Values

L(32)L(\frac{3}{2}) \approx 0.280521+1.18448i0.280521 + 1.18448i
L(12)L(\frac12) \approx 0.280521+1.18448i0.280521 + 1.18448i
L(2)L(2) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1+(1.870.695i)T 1 + (-1.87 - 0.695i)T
5 1+(1.214.84i)T 1 + (-1.21 - 4.84i)T
11 1+3.31iT 1 + 3.31iT
good3 1+2.63T+9T2 1 + 2.63T + 9T^{2}
7 1+12.3T+49T2 1 + 12.3T + 49T^{2}
13 1+4.53iT169T2 1 + 4.53iT - 169T^{2}
17 112.6iT289T2 1 - 12.6iT - 289T^{2}
19 116.3iT361T2 1 - 16.3iT - 361T^{2}
23 1+11.8T+529T2 1 + 11.8T + 529T^{2}
29 127.7T+841T2 1 - 27.7T + 841T^{2}
31 1+2.38iT961T2 1 + 2.38iT - 961T^{2}
37 159.7iT1.36e3T2 1 - 59.7iT - 1.36e3T^{2}
41 116.4T+1.68e3T2 1 - 16.4T + 1.68e3T^{2}
43 1+48.6T+1.84e3T2 1 + 48.6T + 1.84e3T^{2}
47 180.3T+2.20e3T2 1 - 80.3T + 2.20e3T^{2}
53 1+66.9iT2.80e3T2 1 + 66.9iT - 2.80e3T^{2}
59 1+12.4iT3.48e3T2 1 + 12.4iT - 3.48e3T^{2}
61 12.82T+3.72e3T2 1 - 2.82T + 3.72e3T^{2}
67 155.3T+4.48e3T2 1 - 55.3T + 4.48e3T^{2}
71 1124.iT5.04e3T2 1 - 124. iT - 5.04e3T^{2}
73 1+130.iT5.32e3T2 1 + 130. iT - 5.32e3T^{2}
79 174.9iT6.24e3T2 1 - 74.9iT - 6.24e3T^{2}
83 119.8T+6.88e3T2 1 - 19.8T + 6.88e3T^{2}
89 1+92.5T+7.92e3T2 1 + 92.5T + 7.92e3T^{2}
97 17.08iT9.40e3T2 1 - 7.08iT - 9.40e3T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−12.47394385704920289187487970028, −11.73101209196305741205139614819, −10.62435836336943140912590029662, −9.988971827957549988585778408485, −8.239637449578214888656107834518, −6.76609097743147624843492133569, −6.28039785831927344282644220517, −5.55440179457644862858658491135, −3.73633480113593235918570087791, −2.80676338962456764528767269621, 0.51782517297914865066370845432, 2.69446113142784496104007743739, 4.21706146216638167480431124142, 5.36015494365793337276421024625, 6.16848209881777056493048869180, 7.05238036402119427019980634856, 9.059816819260354340759114495312, 9.848501414528109502469473947651, 10.87891706376037814183669955190, 12.08799922237947939413343067930

Graph of the ZZ-function along the critical line