L(s) = 1 | + (−1.40 + 0.171i)2-s + (1.44 − 1.44i)3-s + (1.94 − 0.481i)4-s + (0.849 − 2.06i)5-s + (−1.77 + 2.27i)6-s + (3.60 + 3.60i)7-s + (−2.64 + 1.00i)8-s − 1.16i·9-s + (−0.837 + 3.04i)10-s − i·11-s + (2.10 − 3.49i)12-s + (−2.27 − 2.27i)13-s + (−5.67 − 4.44i)14-s + (−1.76 − 4.21i)15-s + (3.53 − 1.86i)16-s + (−3.21 + 3.21i)17-s + ⋯ |
L(s) = 1 | + (−0.992 + 0.121i)2-s + (0.833 − 0.833i)3-s + (0.970 − 0.240i)4-s + (0.379 − 0.925i)5-s + (−0.726 + 0.928i)6-s + (1.36 + 1.36i)7-s + (−0.934 + 0.356i)8-s − 0.388i·9-s + (−0.264 + 0.964i)10-s − 0.301i·11-s + (0.608 − 1.00i)12-s + (−0.630 − 0.630i)13-s + (−1.51 − 1.18i)14-s + (−0.454 − 1.08i)15-s + (0.884 − 0.467i)16-s + (−0.780 + 0.780i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 220 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.764 + 0.644i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 220 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.764 + 0.644i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.11131 - 0.405586i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.11131 - 0.405586i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1.40 - 0.171i)T \) |
| 5 | \( 1 + (-0.849 + 2.06i)T \) |
| 11 | \( 1 + iT \) |
good | 3 | \( 1 + (-1.44 + 1.44i)T - 3iT^{2} \) |
| 7 | \( 1 + (-3.60 - 3.60i)T + 7iT^{2} \) |
| 13 | \( 1 + (2.27 + 2.27i)T + 13iT^{2} \) |
| 17 | \( 1 + (3.21 - 3.21i)T - 17iT^{2} \) |
| 19 | \( 1 - 1.17T + 19T^{2} \) |
| 23 | \( 1 + (1.72 - 1.72i)T - 23iT^{2} \) |
| 29 | \( 1 + 8.70iT - 29T^{2} \) |
| 31 | \( 1 + 2.23iT - 31T^{2} \) |
| 37 | \( 1 + (4.21 - 4.21i)T - 37iT^{2} \) |
| 41 | \( 1 + 1.59T + 41T^{2} \) |
| 43 | \( 1 + (4.09 - 4.09i)T - 43iT^{2} \) |
| 47 | \( 1 + (0.691 + 0.691i)T + 47iT^{2} \) |
| 53 | \( 1 + (3.07 + 3.07i)T + 53iT^{2} \) |
| 59 | \( 1 - 3.06T + 59T^{2} \) |
| 61 | \( 1 + 3.44T + 61T^{2} \) |
| 67 | \( 1 + (4.51 + 4.51i)T + 67iT^{2} \) |
| 71 | \( 1 - 10.0iT - 71T^{2} \) |
| 73 | \( 1 + (-6.84 - 6.84i)T + 73iT^{2} \) |
| 79 | \( 1 + 0.973T + 79T^{2} \) |
| 83 | \( 1 + (-0.453 + 0.453i)T - 83iT^{2} \) |
| 89 | \( 1 - 4.23iT - 89T^{2} \) |
| 97 | \( 1 + (-7.14 + 7.14i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.09750564678114081663752787049, −11.33730367539888552506620928178, −9.897425308822187993135215382115, −8.822850224362638479310476345185, −8.283423179890846360680478641926, −7.75583483743621505364820571061, −6.11667864919122207599991818756, −5.08569246358643107240420504906, −2.45350545364561619093950087858, −1.65613977053951714189558617124,
1.98255276241600182583495254897, 3.42911804521163661870955677299, 4.73177467559011348929950656704, 6.86753902431564649805475067607, 7.43376770045736862604293991387, 8.627904554195719399823574697970, 9.540972197050607005236152036261, 10.42340688957783436198945029180, 10.91690435608967953768111848301, 11.95789803317719244699753721010