L(s) = 1 | + (1.31 − 0.513i)2-s + (−0.912 + 0.912i)3-s + (1.47 − 1.35i)4-s + (1.46 − 1.68i)5-s + (−0.733 + 1.67i)6-s + (−0.0653 − 0.0653i)7-s + (1.24 − 2.54i)8-s + 1.33i·9-s + (1.06 − 2.97i)10-s − i·11-s + (−0.107 + 2.57i)12-s + (0.473 + 0.473i)13-s + (−0.119 − 0.0524i)14-s + (0.204 + 2.87i)15-s + (0.332 − 3.98i)16-s + (−1.01 + 1.01i)17-s + ⋯ |
L(s) = 1 | + (0.931 − 0.363i)2-s + (−0.526 + 0.526i)3-s + (0.735 − 0.677i)4-s + (0.655 − 0.755i)5-s + (−0.299 + 0.682i)6-s + (−0.0246 − 0.0246i)7-s + (0.439 − 0.898i)8-s + 0.444i·9-s + (0.335 − 0.941i)10-s − 0.301i·11-s + (−0.0309 + 0.744i)12-s + (0.131 + 0.131i)13-s + (−0.0319 − 0.0140i)14-s + (0.0528 + 0.743i)15-s + (0.0830 − 0.996i)16-s + (−0.245 + 0.245i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 220 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.865 + 0.500i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 220 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.865 + 0.500i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.83354 - 0.491808i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.83354 - 0.491808i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-1.31 + 0.513i)T \) |
| 5 | \( 1 + (-1.46 + 1.68i)T \) |
| 11 | \( 1 + iT \) |
good | 3 | \( 1 + (0.912 - 0.912i)T - 3iT^{2} \) |
| 7 | \( 1 + (0.0653 + 0.0653i)T + 7iT^{2} \) |
| 13 | \( 1 + (-0.473 - 0.473i)T + 13iT^{2} \) |
| 17 | \( 1 + (1.01 - 1.01i)T - 17iT^{2} \) |
| 19 | \( 1 - 2.65T + 19T^{2} \) |
| 23 | \( 1 + (5.32 - 5.32i)T - 23iT^{2} \) |
| 29 | \( 1 - 5.94iT - 29T^{2} \) |
| 31 | \( 1 - 1.44iT - 31T^{2} \) |
| 37 | \( 1 + (5.27 - 5.27i)T - 37iT^{2} \) |
| 41 | \( 1 + 5.13T + 41T^{2} \) |
| 43 | \( 1 + (4.06 - 4.06i)T - 43iT^{2} \) |
| 47 | \( 1 + (7.89 + 7.89i)T + 47iT^{2} \) |
| 53 | \( 1 + (-2.60 - 2.60i)T + 53iT^{2} \) |
| 59 | \( 1 - 7.70T + 59T^{2} \) |
| 61 | \( 1 - 7.06T + 61T^{2} \) |
| 67 | \( 1 + (-5.47 - 5.47i)T + 67iT^{2} \) |
| 71 | \( 1 + 1.80iT - 71T^{2} \) |
| 73 | \( 1 + (-5.16 - 5.16i)T + 73iT^{2} \) |
| 79 | \( 1 - 14.2T + 79T^{2} \) |
| 83 | \( 1 + (-11.9 + 11.9i)T - 83iT^{2} \) |
| 89 | \( 1 + 5.69iT - 89T^{2} \) |
| 97 | \( 1 + (0.398 - 0.398i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.11958497397502665443461383386, −11.42543456784648680343337957978, −10.33819835365175548490084088577, −9.723847458896414653144354802389, −8.303915177972996513214522828321, −6.70404330228481278574375419233, −5.49962230331611239823887521395, −5.00109772773873541451647611080, −3.65296834201862172864947065186, −1.79140148749787274270072734663,
2.22978421346614828705390282665, 3.70621409831943103843164909669, 5.28531815795923366984717247156, 6.29121920684143919758051267333, 6.84482919533330499286492839889, 7.989354990795769072340058121419, 9.572814531805546894399298231278, 10.72596727433304238946470118086, 11.68690842864470167210631757891, 12.40726944964209372888768418275