L(s) = 1 | + (−0.354 − 1.36i)2-s + (−1.16 + 1.16i)3-s + (−1.74 + 0.971i)4-s + (−1.42 − 1.72i)5-s + (2.00 + 1.18i)6-s + (1.60 + 1.60i)7-s + (1.94 + 2.04i)8-s + 0.282i·9-s + (−1.85 + 2.56i)10-s + i·11-s + (0.906 − 3.17i)12-s + (3.94 + 3.94i)13-s + (1.62 − 2.76i)14-s + (3.66 + 0.350i)15-s + (2.11 − 3.39i)16-s + (−4.86 + 4.86i)17-s + ⋯ |
L(s) = 1 | + (−0.250 − 0.968i)2-s + (−0.673 + 0.673i)3-s + (−0.874 + 0.485i)4-s + (−0.636 − 0.771i)5-s + (0.820 + 0.482i)6-s + (0.605 + 0.605i)7-s + (0.689 + 0.724i)8-s + 0.0940i·9-s + (−0.586 + 0.809i)10-s + 0.301i·11-s + (0.261 − 0.915i)12-s + (1.09 + 1.09i)13-s + (0.434 − 0.737i)14-s + (0.947 + 0.0903i)15-s + (0.528 − 0.848i)16-s + (−1.17 + 1.17i)17-s + ⋯ |
Λ(s)=(=(220s/2ΓC(s)L(s)(0.799−0.600i)Λ(2−s)
Λ(s)=(=(220s/2ΓC(s+1/2)L(s)(0.799−0.600i)Λ(1−s)
Degree: |
2 |
Conductor: |
220
= 22⋅5⋅11
|
Sign: |
0.799−0.600i
|
Analytic conductor: |
1.75670 |
Root analytic conductor: |
1.32540 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ220(23,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 220, ( :1/2), 0.799−0.600i)
|
Particular Values
L(1) |
≈ |
0.637662+0.212639i |
L(21) |
≈ |
0.637662+0.212639i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.354+1.36i)T |
| 5 | 1+(1.42+1.72i)T |
| 11 | 1−iT |
good | 3 | 1+(1.16−1.16i)T−3iT2 |
| 7 | 1+(−1.60−1.60i)T+7iT2 |
| 13 | 1+(−3.94−3.94i)T+13iT2 |
| 17 | 1+(4.86−4.86i)T−17iT2 |
| 19 | 1−5.54T+19T2 |
| 23 | 1+(3.01−3.01i)T−23iT2 |
| 29 | 1+6.65iT−29T2 |
| 31 | 1−0.619iT−31T2 |
| 37 | 1+(−0.294+0.294i)T−37iT2 |
| 41 | 1+2.27T+41T2 |
| 43 | 1+(2.52−2.52i)T−43iT2 |
| 47 | 1+(−8.42−8.42i)T+47iT2 |
| 53 | 1+(−2.22−2.22i)T+53iT2 |
| 59 | 1+1.02T+59T2 |
| 61 | 1+4.52T+61T2 |
| 67 | 1+(3.45+3.45i)T+67iT2 |
| 71 | 1−11.6iT−71T2 |
| 73 | 1+(−3.57−3.57i)T+73iT2 |
| 79 | 1−2.91T+79T2 |
| 83 | 1+(−9.90+9.90i)T−83iT2 |
| 89 | 1+10.6iT−89T2 |
| 97 | 1+(0.328−0.328i)T−97iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.82509622980105370575464985428, −11.56612355178822024037591133195, −10.71474422176355619871836919019, −9.512860809632527566546148785680, −8.696993599214977583794867206143, −7.81737852667245224351661456473, −5.78314296886247503140283202954, −4.62614042031153995175681163074, −3.96275256325090333761856762225, −1.76171195040172244662055396504,
0.72430699420033468704896578392, 3.62492579445557852930175202565, 5.13005292666990074950801979224, 6.30005004215301743199899314779, 7.11698473101565287176271336495, 7.83369952270886482603732917710, 8.937389007123087755887957409451, 10.45280750523032070525086321214, 11.12737794653577316907660306753, 12.11786042130547443126178139645