L(s) = 1 | − 5.20·2-s + 19.0·4-s − 5·5-s − 57.6·8-s + 26.0·10-s − 56.6·11-s + 43.4·13-s + 147.·16-s − 39.8·17-s − 52.3·19-s − 95.3·20-s + 294.·22-s + 53.5·23-s + 25·25-s − 225.·26-s − 49.6·29-s + 73.7·31-s − 305.·32-s + 207.·34-s − 307.·37-s + 272.·38-s + 288.·40-s + 292.·41-s − 365.·43-s − 1.08e3·44-s − 278.·46-s − 442.·47-s + ⋯ |
L(s) = 1 | − 1.83·2-s + 2.38·4-s − 0.447·5-s − 2.54·8-s + 0.822·10-s − 1.55·11-s + 0.926·13-s + 2.30·16-s − 0.568·17-s − 0.632·19-s − 1.06·20-s + 2.85·22-s + 0.485·23-s + 0.200·25-s − 1.70·26-s − 0.317·29-s + 0.427·31-s − 1.68·32-s + 1.04·34-s − 1.36·37-s + 1.16·38-s + 1.13·40-s + 1.11·41-s − 1.29·43-s − 3.70·44-s − 0.892·46-s − 1.37·47-s + ⋯ |
Λ(s)=(=(2205s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(2205s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
0.3184890611 |
L(21) |
≈ |
0.3184890611 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 5 | 1+5T |
| 7 | 1 |
good | 2 | 1+5.20T+8T2 |
| 11 | 1+56.6T+1.33e3T2 |
| 13 | 1−43.4T+2.19e3T2 |
| 17 | 1+39.8T+4.91e3T2 |
| 19 | 1+52.3T+6.85e3T2 |
| 23 | 1−53.5T+1.21e4T2 |
| 29 | 1+49.6T+2.43e4T2 |
| 31 | 1−73.7T+2.97e4T2 |
| 37 | 1+307.T+5.06e4T2 |
| 41 | 1−292.T+6.89e4T2 |
| 43 | 1+365.T+7.95e4T2 |
| 47 | 1+442.T+1.03e5T2 |
| 53 | 1+25.7T+1.48e5T2 |
| 59 | 1−376.T+2.05e5T2 |
| 61 | 1+632.T+2.26e5T2 |
| 67 | 1−511.T+3.00e5T2 |
| 71 | 1+134.T+3.57e5T2 |
| 73 | 1+409.T+3.89e5T2 |
| 79 | 1+926.T+4.93e5T2 |
| 83 | 1−296.T+5.71e5T2 |
| 89 | 1−488.T+7.04e5T2 |
| 97 | 1−475.T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.444648816804266169228558962011, −8.295984246461963348823047958578, −7.39586293797013354895189064437, −6.74260874749952116528547544882, −5.88393035501710146999830574013, −4.78121388250290639271504972806, −3.39608942089151859182867711145, −2.49486395269559300339835338332, −1.53246253478909874278807853100, −0.33759025064208613497695651845,
0.33759025064208613497695651845, 1.53246253478909874278807853100, 2.49486395269559300339835338332, 3.39608942089151859182867711145, 4.78121388250290639271504972806, 5.88393035501710146999830574013, 6.74260874749952116528547544882, 7.39586293797013354895189064437, 8.295984246461963348823047958578, 8.444648816804266169228558962011