Properties

Label 2-2205-1.1-c3-0-10
Degree $2$
Conductor $2205$
Sign $1$
Analytic cond. $130.099$
Root an. cond. $11.4061$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 5.20·2-s + 19.0·4-s − 5·5-s − 57.6·8-s + 26.0·10-s − 56.6·11-s + 43.4·13-s + 147.·16-s − 39.8·17-s − 52.3·19-s − 95.3·20-s + 294.·22-s + 53.5·23-s + 25·25-s − 225.·26-s − 49.6·29-s + 73.7·31-s − 305.·32-s + 207.·34-s − 307.·37-s + 272.·38-s + 288.·40-s + 292.·41-s − 365.·43-s − 1.08e3·44-s − 278.·46-s − 442.·47-s + ⋯
L(s)  = 1  − 1.83·2-s + 2.38·4-s − 0.447·5-s − 2.54·8-s + 0.822·10-s − 1.55·11-s + 0.926·13-s + 2.30·16-s − 0.568·17-s − 0.632·19-s − 1.06·20-s + 2.85·22-s + 0.485·23-s + 0.200·25-s − 1.70·26-s − 0.317·29-s + 0.427·31-s − 1.68·32-s + 1.04·34-s − 1.36·37-s + 1.16·38-s + 1.13·40-s + 1.11·41-s − 1.29·43-s − 3.70·44-s − 0.892·46-s − 1.37·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2205 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2205 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2205\)    =    \(3^{2} \cdot 5 \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(130.099\)
Root analytic conductor: \(11.4061\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2205,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(0.3184890611\)
\(L(\frac12)\) \(\approx\) \(0.3184890611\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 + 5T \)
7 \( 1 \)
good2 \( 1 + 5.20T + 8T^{2} \)
11 \( 1 + 56.6T + 1.33e3T^{2} \)
13 \( 1 - 43.4T + 2.19e3T^{2} \)
17 \( 1 + 39.8T + 4.91e3T^{2} \)
19 \( 1 + 52.3T + 6.85e3T^{2} \)
23 \( 1 - 53.5T + 1.21e4T^{2} \)
29 \( 1 + 49.6T + 2.43e4T^{2} \)
31 \( 1 - 73.7T + 2.97e4T^{2} \)
37 \( 1 + 307.T + 5.06e4T^{2} \)
41 \( 1 - 292.T + 6.89e4T^{2} \)
43 \( 1 + 365.T + 7.95e4T^{2} \)
47 \( 1 + 442.T + 1.03e5T^{2} \)
53 \( 1 + 25.7T + 1.48e5T^{2} \)
59 \( 1 - 376.T + 2.05e5T^{2} \)
61 \( 1 + 632.T + 2.26e5T^{2} \)
67 \( 1 - 511.T + 3.00e5T^{2} \)
71 \( 1 + 134.T + 3.57e5T^{2} \)
73 \( 1 + 409.T + 3.89e5T^{2} \)
79 \( 1 + 926.T + 4.93e5T^{2} \)
83 \( 1 - 296.T + 5.71e5T^{2} \)
89 \( 1 - 488.T + 7.04e5T^{2} \)
97 \( 1 - 475.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.444648816804266169228558962011, −8.295984246461963348823047958578, −7.39586293797013354895189064437, −6.74260874749952116528547544882, −5.88393035501710146999830574013, −4.78121388250290639271504972806, −3.39608942089151859182867711145, −2.49486395269559300339835338332, −1.53246253478909874278807853100, −0.33759025064208613497695651845, 0.33759025064208613497695651845, 1.53246253478909874278807853100, 2.49486395269559300339835338332, 3.39608942089151859182867711145, 4.78121388250290639271504972806, 5.88393035501710146999830574013, 6.74260874749952116528547544882, 7.39586293797013354895189064437, 8.295984246461963348823047958578, 8.444648816804266169228558962011

Graph of the $Z$-function along the critical line