Properties

Label 2-2205-1.1-c3-0-118
Degree $2$
Conductor $2205$
Sign $1$
Analytic cond. $130.099$
Root an. cond. $11.4061$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4.91·2-s + 16.1·4-s + 5·5-s + 40.1·8-s + 24.5·10-s − 11.2·11-s − 31.5·13-s + 68.0·16-s + 67.9·17-s + 158.·19-s + 80.8·20-s − 55.0·22-s − 41.6·23-s + 25·25-s − 155.·26-s + 278.·29-s + 35.4·31-s + 13.3·32-s + 334.·34-s − 35.5·37-s + 778.·38-s + 200.·40-s − 154.·41-s − 309.·43-s − 181.·44-s − 204.·46-s + 277.·47-s + ⋯
L(s)  = 1  + 1.73·2-s + 2.02·4-s + 0.447·5-s + 1.77·8-s + 0.777·10-s − 0.307·11-s − 0.673·13-s + 1.06·16-s + 0.970·17-s + 1.91·19-s + 0.903·20-s − 0.533·22-s − 0.378·23-s + 0.200·25-s − 1.17·26-s + 1.78·29-s + 0.205·31-s + 0.0735·32-s + 1.68·34-s − 0.157·37-s + 3.32·38-s + 0.793·40-s − 0.588·41-s − 1.09·43-s − 0.620·44-s − 0.657·46-s + 0.859·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2205 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2205 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2205\)    =    \(3^{2} \cdot 5 \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(130.099\)
Root analytic conductor: \(11.4061\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2205,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(8.150193899\)
\(L(\frac12)\) \(\approx\) \(8.150193899\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 - 5T \)
7 \( 1 \)
good2 \( 1 - 4.91T + 8T^{2} \)
11 \( 1 + 11.2T + 1.33e3T^{2} \)
13 \( 1 + 31.5T + 2.19e3T^{2} \)
17 \( 1 - 67.9T + 4.91e3T^{2} \)
19 \( 1 - 158.T + 6.85e3T^{2} \)
23 \( 1 + 41.6T + 1.21e4T^{2} \)
29 \( 1 - 278.T + 2.43e4T^{2} \)
31 \( 1 - 35.4T + 2.97e4T^{2} \)
37 \( 1 + 35.5T + 5.06e4T^{2} \)
41 \( 1 + 154.T + 6.89e4T^{2} \)
43 \( 1 + 309.T + 7.95e4T^{2} \)
47 \( 1 - 277.T + 1.03e5T^{2} \)
53 \( 1 + 79.8T + 1.48e5T^{2} \)
59 \( 1 - 901.T + 2.05e5T^{2} \)
61 \( 1 - 514.T + 2.26e5T^{2} \)
67 \( 1 - 774.T + 3.00e5T^{2} \)
71 \( 1 + 697.T + 3.57e5T^{2} \)
73 \( 1 - 441.T + 3.89e5T^{2} \)
79 \( 1 + 305.T + 4.93e5T^{2} \)
83 \( 1 - 925.T + 5.71e5T^{2} \)
89 \( 1 + 46.7T + 7.04e5T^{2} \)
97 \( 1 - 779.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.545007667596842795443620804789, −7.57241017584103997469838721731, −6.91795077661738455373510504233, −6.09773922532841440499698581917, −5.19108653255088530237515353122, −5.02688896572114882219457928835, −3.78140585033466480384801039899, −3.04451295539954882201981565478, −2.28986089814839037503177917420, −1.02797862745646075823150411519, 1.02797862745646075823150411519, 2.28986089814839037503177917420, 3.04451295539954882201981565478, 3.78140585033466480384801039899, 5.02688896572114882219457928835, 5.19108653255088530237515353122, 6.09773922532841440499698581917, 6.91795077661738455373510504233, 7.57241017584103997469838721731, 8.545007667596842795443620804789

Graph of the $Z$-function along the critical line