L(s) = 1 | + 4.91·2-s + 16.1·4-s + 5·5-s + 40.1·8-s + 24.5·10-s − 11.2·11-s − 31.5·13-s + 68.0·16-s + 67.9·17-s + 158.·19-s + 80.8·20-s − 55.0·22-s − 41.6·23-s + 25·25-s − 155.·26-s + 278.·29-s + 35.4·31-s + 13.3·32-s + 334.·34-s − 35.5·37-s + 778.·38-s + 200.·40-s − 154.·41-s − 309.·43-s − 181.·44-s − 204.·46-s + 277.·47-s + ⋯ |
L(s) = 1 | + 1.73·2-s + 2.02·4-s + 0.447·5-s + 1.77·8-s + 0.777·10-s − 0.307·11-s − 0.673·13-s + 1.06·16-s + 0.970·17-s + 1.91·19-s + 0.903·20-s − 0.533·22-s − 0.378·23-s + 0.200·25-s − 1.17·26-s + 1.78·29-s + 0.205·31-s + 0.0735·32-s + 1.68·34-s − 0.157·37-s + 3.32·38-s + 0.793·40-s − 0.588·41-s − 1.09·43-s − 0.620·44-s − 0.657·46-s + 0.859·47-s + ⋯ |
Λ(s)=(=(2205s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(2205s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
8.150193899 |
L(21) |
≈ |
8.150193899 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 5 | 1−5T |
| 7 | 1 |
good | 2 | 1−4.91T+8T2 |
| 11 | 1+11.2T+1.33e3T2 |
| 13 | 1+31.5T+2.19e3T2 |
| 17 | 1−67.9T+4.91e3T2 |
| 19 | 1−158.T+6.85e3T2 |
| 23 | 1+41.6T+1.21e4T2 |
| 29 | 1−278.T+2.43e4T2 |
| 31 | 1−35.4T+2.97e4T2 |
| 37 | 1+35.5T+5.06e4T2 |
| 41 | 1+154.T+6.89e4T2 |
| 43 | 1+309.T+7.95e4T2 |
| 47 | 1−277.T+1.03e5T2 |
| 53 | 1+79.8T+1.48e5T2 |
| 59 | 1−901.T+2.05e5T2 |
| 61 | 1−514.T+2.26e5T2 |
| 67 | 1−774.T+3.00e5T2 |
| 71 | 1+697.T+3.57e5T2 |
| 73 | 1−441.T+3.89e5T2 |
| 79 | 1+305.T+4.93e5T2 |
| 83 | 1−925.T+5.71e5T2 |
| 89 | 1+46.7T+7.04e5T2 |
| 97 | 1−779.T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.545007667596842795443620804789, −7.57241017584103997469838721731, −6.91795077661738455373510504233, −6.09773922532841440499698581917, −5.19108653255088530237515353122, −5.02688896572114882219457928835, −3.78140585033466480384801039899, −3.04451295539954882201981565478, −2.28986089814839037503177917420, −1.02797862745646075823150411519,
1.02797862745646075823150411519, 2.28986089814839037503177917420, 3.04451295539954882201981565478, 3.78140585033466480384801039899, 5.02688896572114882219457928835, 5.19108653255088530237515353122, 6.09773922532841440499698581917, 6.91795077661738455373510504233, 7.57241017584103997469838721731, 8.545007667596842795443620804789