Properties

Label 2-2205-1.1-c3-0-135
Degree $2$
Conductor $2205$
Sign $-1$
Analytic cond. $130.099$
Root an. cond. $11.4061$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 8·4-s + 5·5-s − 42·11-s − 20·13-s + 64·16-s + 66·17-s − 38·19-s − 40·20-s − 12·23-s + 25·25-s + 258·29-s − 146·31-s + 434·37-s − 282·41-s + 20·43-s + 336·44-s − 72·47-s + 160·52-s − 336·53-s − 210·55-s − 360·59-s + 682·61-s − 512·64-s − 100·65-s + 812·67-s − 528·68-s − 810·71-s + ⋯
L(s)  = 1  − 4-s + 0.447·5-s − 1.15·11-s − 0.426·13-s + 16-s + 0.941·17-s − 0.458·19-s − 0.447·20-s − 0.108·23-s + 1/5·25-s + 1.65·29-s − 0.845·31-s + 1.92·37-s − 1.07·41-s + 0.0709·43-s + 1.15·44-s − 0.223·47-s + 0.426·52-s − 0.870·53-s − 0.514·55-s − 0.794·59-s + 1.43·61-s − 64-s − 0.190·65-s + 1.48·67-s − 0.941·68-s − 1.35·71-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2205 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2205 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2205\)    =    \(3^{2} \cdot 5 \cdot 7^{2}\)
Sign: $-1$
Analytic conductor: \(130.099\)
Root analytic conductor: \(11.4061\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 2205,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 \)
5 \( 1 - p T \)
7 \( 1 \)
good2 \( 1 + p^{3} T^{2} \)
11 \( 1 + 42 T + p^{3} T^{2} \)
13 \( 1 + 20 T + p^{3} T^{2} \)
17 \( 1 - 66 T + p^{3} T^{2} \)
19 \( 1 + 2 p T + p^{3} T^{2} \)
23 \( 1 + 12 T + p^{3} T^{2} \)
29 \( 1 - 258 T + p^{3} T^{2} \)
31 \( 1 + 146 T + p^{3} T^{2} \)
37 \( 1 - 434 T + p^{3} T^{2} \)
41 \( 1 + 282 T + p^{3} T^{2} \)
43 \( 1 - 20 T + p^{3} T^{2} \)
47 \( 1 + 72 T + p^{3} T^{2} \)
53 \( 1 + 336 T + p^{3} T^{2} \)
59 \( 1 + 360 T + p^{3} T^{2} \)
61 \( 1 - 682 T + p^{3} T^{2} \)
67 \( 1 - 812 T + p^{3} T^{2} \)
71 \( 1 + 810 T + p^{3} T^{2} \)
73 \( 1 - 124 T + p^{3} T^{2} \)
79 \( 1 - 1136 T + p^{3} T^{2} \)
83 \( 1 - 156 T + p^{3} T^{2} \)
89 \( 1 + 1038 T + p^{3} T^{2} \)
97 \( 1 + 1208 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.180845144336725208950192569272, −7.86763727884578752465186768545, −6.71055478766858683568552920170, −5.74030836243527543144812071372, −5.11714673948007374960012805625, −4.42016130412106247171583368918, −3.31092781473497419716077860863, −2.41910258333400064864603127800, −1.08144668099918349951983835532, 0, 1.08144668099918349951983835532, 2.41910258333400064864603127800, 3.31092781473497419716077860863, 4.42016130412106247171583368918, 5.11714673948007374960012805625, 5.74030836243527543144812071372, 6.71055478766858683568552920170, 7.86763727884578752465186768545, 8.180845144336725208950192569272

Graph of the $Z$-function along the critical line