L(s) = 1 | + (0.964 + 1.03i)2-s + (0.554 + 0.722i)3-s + (−0.139 + 1.99i)4-s + (0.772 + 0.592i)5-s + (−0.212 + 1.26i)6-s + (2.49 − 0.891i)7-s + (−2.19 + 1.78i)8-s + (0.561 − 2.09i)9-s + (0.132 + 1.37i)10-s + (−3.25 − 0.428i)11-s + (−1.51 + 1.00i)12-s + (−4.64 − 1.92i)13-s + (3.32 + 1.71i)14-s + 0.886i·15-s + (−3.96 − 0.554i)16-s + (3.80 + 2.19i)17-s + ⋯ |
L(s) = 1 | + (0.682 + 0.731i)2-s + (0.320 + 0.417i)3-s + (−0.0695 + 0.997i)4-s + (0.345 + 0.264i)5-s + (−0.0867 + 0.518i)6-s + (0.941 − 0.337i)7-s + (−0.776 + 0.629i)8-s + (0.187 − 0.699i)9-s + (0.0417 + 0.433i)10-s + (−0.982 − 0.129i)11-s + (−0.438 + 0.290i)12-s + (−1.28 − 0.533i)13-s + (0.888 + 0.458i)14-s + 0.228i·15-s + (−0.990 − 0.138i)16-s + (0.921 + 0.532i)17-s + ⋯ |
Λ(s)=(=(224s/2ΓC(s)L(s)(0.0897−0.995i)Λ(2−s)
Λ(s)=(=(224s/2ΓC(s+1/2)L(s)(0.0897−0.995i)Λ(1−s)
Degree: |
2 |
Conductor: |
224
= 25⋅7
|
Sign: |
0.0897−0.995i
|
Analytic conductor: |
1.78864 |
Root analytic conductor: |
1.33740 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ224(109,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 224, ( :1/2), 0.0897−0.995i)
|
Particular Values
L(1) |
≈ |
1.42990+1.30684i |
L(21) |
≈ |
1.42990+1.30684i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.964−1.03i)T |
| 7 | 1+(−2.49+0.891i)T |
good | 3 | 1+(−0.554−0.722i)T+(−0.776+2.89i)T2 |
| 5 | 1+(−0.772−0.592i)T+(1.29+4.82i)T2 |
| 11 | 1+(3.25+0.428i)T+(10.6+2.84i)T2 |
| 13 | 1+(4.64+1.92i)T+(9.19+9.19i)T2 |
| 17 | 1+(−3.80−2.19i)T+(8.5+14.7i)T2 |
| 19 | 1+(−0.313−2.38i)T+(−18.3+4.91i)T2 |
| 23 | 1+(1.12−4.21i)T+(−19.9−11.5i)T2 |
| 29 | 1+(−3.82+9.23i)T+(−20.5−20.5i)T2 |
| 31 | 1+(−0.642+1.11i)T+(−15.5−26.8i)T2 |
| 37 | 1+(3.26+2.50i)T+(9.57+35.7i)T2 |
| 41 | 1+(−4.76−4.76i)T+41iT2 |
| 43 | 1+(0.0816+0.197i)T+(−30.4+30.4i)T2 |
| 47 | 1+(5.27−3.04i)T+(23.5−40.7i)T2 |
| 53 | 1+(6.41+0.844i)T+(51.1+13.7i)T2 |
| 59 | 1+(1.84−14.0i)T+(−56.9−15.2i)T2 |
| 61 | 1+(7.84−1.03i)T+(58.9−15.7i)T2 |
| 67 | 1+(−4.59−5.98i)T+(−17.3+64.7i)T2 |
| 71 | 1+(−6.86+6.86i)T−71iT2 |
| 73 | 1+(−9.46+2.53i)T+(63.2−36.5i)T2 |
| 79 | 1+(6.16−3.56i)T+(39.5−68.4i)T2 |
| 83 | 1+(−4.32−1.79i)T+(58.6+58.6i)T2 |
| 89 | 1+(−7.96−2.13i)T+(77.0+44.5i)T2 |
| 97 | 1+16.7T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.54643043269646391687899717513, −11.81651557861617110453756797960, −10.40524994316988896963859189911, −9.619590857924990482167219780943, −8.051633665787009072435760190793, −7.68861336112144036318647279642, −6.18338242885071771634721666875, −5.15976750495678281683320915056, −4.06203341857613610593257723879, −2.70078029338222087305293342878,
1.78173591637930089624515762803, 2.79771041684807355233950965677, 4.97611392191706454717491509097, 5.09110468456966997909273614705, 6.96943215059874585649579564281, 8.038128273125078206738921070979, 9.266541954939489839265925162475, 10.29726462020507996147510454083, 11.14939794454463873838733542944, 12.30689345380477136546485324536