L(s) = 1 | + (−0.707 + 0.707i)2-s − 1.00i·4-s + (0.707 − 0.707i)7-s + (0.707 + 0.707i)8-s + (0.707 + 0.707i)9-s + (−0.707 + 0.292i)11-s + 1.00i·14-s − 1.00·16-s − 1.00·18-s + (0.292 − 0.707i)22-s + (−1 − i)23-s + (−0.707 + 0.707i)25-s + (−0.707 − 0.707i)28-s + (0.707 + 0.292i)29-s + (0.707 − 0.707i)32-s + ⋯ |
L(s) = 1 | + (−0.707 + 0.707i)2-s − 1.00i·4-s + (0.707 − 0.707i)7-s + (0.707 + 0.707i)8-s + (0.707 + 0.707i)9-s + (−0.707 + 0.292i)11-s + 1.00i·14-s − 1.00·16-s − 1.00·18-s + (0.292 − 0.707i)22-s + (−1 − i)23-s + (−0.707 + 0.707i)25-s + (−0.707 − 0.707i)28-s + (0.707 + 0.292i)29-s + (0.707 − 0.707i)32-s + ⋯ |
Λ(s)=(=(224s/2ΓC(s)L(s)(0.831−0.555i)Λ(1−s)
Λ(s)=(=(224s/2ΓC(s)L(s)(0.831−0.555i)Λ(1−s)
Degree: |
2 |
Conductor: |
224
= 25⋅7
|
Sign: |
0.831−0.555i
|
Analytic conductor: |
0.111790 |
Root analytic conductor: |
0.334350 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ224(125,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 224, ( :0), 0.831−0.555i)
|
Particular Values
L(21) |
≈ |
0.5526385469 |
L(21) |
≈ |
0.5526385469 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.707−0.707i)T |
| 7 | 1+(−0.707+0.707i)T |
good | 3 | 1+(−0.707−0.707i)T2 |
| 5 | 1+(0.707−0.707i)T2 |
| 11 | 1+(0.707−0.292i)T+(0.707−0.707i)T2 |
| 13 | 1+(0.707+0.707i)T2 |
| 17 | 1+T2 |
| 19 | 1+(0.707+0.707i)T2 |
| 23 | 1+(1+i)T+iT2 |
| 29 | 1+(−0.707−0.292i)T+(0.707+0.707i)T2 |
| 31 | 1−T2 |
| 37 | 1+(0.707+1.70i)T+(−0.707+0.707i)T2 |
| 41 | 1−iT2 |
| 43 | 1+(1.70−0.707i)T+(0.707−0.707i)T2 |
| 47 | 1+T2 |
| 53 | 1+(1.70−0.707i)T+(0.707−0.707i)T2 |
| 59 | 1+(0.707−0.707i)T2 |
| 61 | 1+(−0.707−0.707i)T2 |
| 67 | 1+(−1.70−0.707i)T+(0.707+0.707i)T2 |
| 71 | 1−iT2 |
| 73 | 1−iT2 |
| 79 | 1−1.41iT−T2 |
| 83 | 1+(0.707+0.707i)T2 |
| 89 | 1+iT2 |
| 97 | 1−T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.70719685740070954544584736102, −11.22085608121654554169311210613, −10.46067214844018528815526359447, −9.772348064972584875416691748883, −8.331101550051849999487007881591, −7.69871991938462507386883068052, −6.80257890134922510809578542478, −5.34425991198805266625831792784, −4.38902995657153048539593973232, −1.87327003141636038599724248583,
1.86659789505119545782081617086, 3.42045103322412422864168502433, 4.84629761488409957491405872450, 6.42454372208400273938871110723, 7.81307626176211525269068538871, 8.469677166565118245229208814431, 9.653087339370503317253723176989, 10.32268712461356583066495434374, 11.59556595055060028731739961768, 12.04135720120587371439196385071