L(s) = 1 | + (−0.707 + 0.707i)2-s − 1.00i·4-s + (0.707 − 0.707i)7-s + (0.707 + 0.707i)8-s + (0.707 + 0.707i)9-s + (−0.707 + 0.292i)11-s + 1.00i·14-s − 1.00·16-s − 1.00·18-s + (0.292 − 0.707i)22-s + (−1 − i)23-s + (−0.707 + 0.707i)25-s + (−0.707 − 0.707i)28-s + (0.707 + 0.292i)29-s + (0.707 − 0.707i)32-s + ⋯ |
L(s) = 1 | + (−0.707 + 0.707i)2-s − 1.00i·4-s + (0.707 − 0.707i)7-s + (0.707 + 0.707i)8-s + (0.707 + 0.707i)9-s + (−0.707 + 0.292i)11-s + 1.00i·14-s − 1.00·16-s − 1.00·18-s + (0.292 − 0.707i)22-s + (−1 − i)23-s + (−0.707 + 0.707i)25-s + (−0.707 − 0.707i)28-s + (0.707 + 0.292i)29-s + (0.707 − 0.707i)32-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 224 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.831 - 0.555i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 224 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.831 - 0.555i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.5526385469\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.5526385469\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.707 - 0.707i)T \) |
| 7 | \( 1 + (-0.707 + 0.707i)T \) |
good | 3 | \( 1 + (-0.707 - 0.707i)T^{2} \) |
| 5 | \( 1 + (0.707 - 0.707i)T^{2} \) |
| 11 | \( 1 + (0.707 - 0.292i)T + (0.707 - 0.707i)T^{2} \) |
| 13 | \( 1 + (0.707 + 0.707i)T^{2} \) |
| 17 | \( 1 + T^{2} \) |
| 19 | \( 1 + (0.707 + 0.707i)T^{2} \) |
| 23 | \( 1 + (1 + i)T + iT^{2} \) |
| 29 | \( 1 + (-0.707 - 0.292i)T + (0.707 + 0.707i)T^{2} \) |
| 31 | \( 1 - T^{2} \) |
| 37 | \( 1 + (0.707 + 1.70i)T + (-0.707 + 0.707i)T^{2} \) |
| 41 | \( 1 - iT^{2} \) |
| 43 | \( 1 + (1.70 - 0.707i)T + (0.707 - 0.707i)T^{2} \) |
| 47 | \( 1 + T^{2} \) |
| 53 | \( 1 + (1.70 - 0.707i)T + (0.707 - 0.707i)T^{2} \) |
| 59 | \( 1 + (0.707 - 0.707i)T^{2} \) |
| 61 | \( 1 + (-0.707 - 0.707i)T^{2} \) |
| 67 | \( 1 + (-1.70 - 0.707i)T + (0.707 + 0.707i)T^{2} \) |
| 71 | \( 1 - iT^{2} \) |
| 73 | \( 1 - iT^{2} \) |
| 79 | \( 1 - 1.41iT - T^{2} \) |
| 83 | \( 1 + (0.707 + 0.707i)T^{2} \) |
| 89 | \( 1 + iT^{2} \) |
| 97 | \( 1 - T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.70719685740070954544584736102, −11.22085608121654554169311210613, −10.46067214844018528815526359447, −9.772348064972584875416691748883, −8.331101550051849999487007881591, −7.69871991938462507386883068052, −6.80257890134922510809578542478, −5.34425991198805266625831792784, −4.38902995657153048539593973232, −1.87327003141636038599724248583,
1.86659789505119545782081617086, 3.42045103322412422864168502433, 4.84629761488409957491405872450, 6.42454372208400273938871110723, 7.81307626176211525269068538871, 8.469677166565118245229208814431, 9.653087339370503317253723176989, 10.32268712461356583066495434374, 11.59556595055060028731739961768, 12.04135720120587371439196385071