L(s) = 1 | + (0.707 + 0.707i)2-s + 1.00i·4-s + (−0.707 − 0.707i)7-s + (−0.707 + 0.707i)8-s + (−0.707 + 0.707i)9-s + (0.707 − 1.70i)11-s − 1.00i·14-s − 1.00·16-s − 1.00·18-s + (1.70 − 0.707i)22-s + (−1 + i)23-s + (0.707 + 0.707i)25-s + (0.707 − 0.707i)28-s + (−0.707 − 1.70i)29-s + (−0.707 − 0.707i)32-s + ⋯ |
L(s) = 1 | + (0.707 + 0.707i)2-s + 1.00i·4-s + (−0.707 − 0.707i)7-s + (−0.707 + 0.707i)8-s + (−0.707 + 0.707i)9-s + (0.707 − 1.70i)11-s − 1.00i·14-s − 1.00·16-s − 1.00·18-s + (1.70 − 0.707i)22-s + (−1 + i)23-s + (0.707 + 0.707i)25-s + (0.707 − 0.707i)28-s + (−0.707 − 1.70i)29-s + (−0.707 − 0.707i)32-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 224 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.555 - 0.831i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 224 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.555 - 0.831i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.9147878900\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9147878900\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.707 - 0.707i)T \) |
| 7 | \( 1 + (0.707 + 0.707i)T \) |
good | 3 | \( 1 + (0.707 - 0.707i)T^{2} \) |
| 5 | \( 1 + (-0.707 - 0.707i)T^{2} \) |
| 11 | \( 1 + (-0.707 + 1.70i)T + (-0.707 - 0.707i)T^{2} \) |
| 13 | \( 1 + (-0.707 + 0.707i)T^{2} \) |
| 17 | \( 1 + T^{2} \) |
| 19 | \( 1 + (-0.707 + 0.707i)T^{2} \) |
| 23 | \( 1 + (1 - i)T - iT^{2} \) |
| 29 | \( 1 + (0.707 + 1.70i)T + (-0.707 + 0.707i)T^{2} \) |
| 31 | \( 1 - T^{2} \) |
| 37 | \( 1 + (-0.707 - 0.292i)T + (0.707 + 0.707i)T^{2} \) |
| 41 | \( 1 + iT^{2} \) |
| 43 | \( 1 + (0.292 - 0.707i)T + (-0.707 - 0.707i)T^{2} \) |
| 47 | \( 1 + T^{2} \) |
| 53 | \( 1 + (0.292 - 0.707i)T + (-0.707 - 0.707i)T^{2} \) |
| 59 | \( 1 + (-0.707 - 0.707i)T^{2} \) |
| 61 | \( 1 + (0.707 - 0.707i)T^{2} \) |
| 67 | \( 1 + (-0.292 - 0.707i)T + (-0.707 + 0.707i)T^{2} \) |
| 71 | \( 1 + iT^{2} \) |
| 73 | \( 1 + iT^{2} \) |
| 79 | \( 1 - 1.41iT - T^{2} \) |
| 83 | \( 1 + (-0.707 + 0.707i)T^{2} \) |
| 89 | \( 1 - iT^{2} \) |
| 97 | \( 1 - T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.01896047236179747630980474753, −11.62413417223418457936967062638, −11.08933817524096374040867117362, −9.558664557522519020388867669763, −8.434536957138598386964682300441, −7.58349170248394100224433670765, −6.29893581866913974948321944843, −5.63213365356674983441617051222, −4.05555792793186239881001508243, −3.05489877579825797630944806539,
2.21337394587585197564071831515, 3.55072378156165014876097734764, 4.81090955923048536674171304725, 6.10004080784686032476692554731, 6.88124373243444318155137645877, 8.823579721935180019121213818173, 9.545982489762076035360758359071, 10.44510991769651225499325994251, 11.74811795196556075540511044261, 12.35448965942733587960770380009