L(s) = 1 | + (0.707 + 0.707i)2-s + 1.00i·4-s + (−0.707 − 0.707i)7-s + (−0.707 + 0.707i)8-s + (−0.707 + 0.707i)9-s + (0.707 − 1.70i)11-s − 1.00i·14-s − 1.00·16-s − 1.00·18-s + (1.70 − 0.707i)22-s + (−1 + i)23-s + (0.707 + 0.707i)25-s + (0.707 − 0.707i)28-s + (−0.707 − 1.70i)29-s + (−0.707 − 0.707i)32-s + ⋯ |
L(s) = 1 | + (0.707 + 0.707i)2-s + 1.00i·4-s + (−0.707 − 0.707i)7-s + (−0.707 + 0.707i)8-s + (−0.707 + 0.707i)9-s + (0.707 − 1.70i)11-s − 1.00i·14-s − 1.00·16-s − 1.00·18-s + (1.70 − 0.707i)22-s + (−1 + i)23-s + (0.707 + 0.707i)25-s + (0.707 − 0.707i)28-s + (−0.707 − 1.70i)29-s + (−0.707 − 0.707i)32-s + ⋯ |
Λ(s)=(=(224s/2ΓC(s)L(s)(0.555−0.831i)Λ(1−s)
Λ(s)=(=(224s/2ΓC(s)L(s)(0.555−0.831i)Λ(1−s)
Degree: |
2 |
Conductor: |
224
= 25⋅7
|
Sign: |
0.555−0.831i
|
Analytic conductor: |
0.111790 |
Root analytic conductor: |
0.334350 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ224(69,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 224, ( :0), 0.555−0.831i)
|
Particular Values
L(21) |
≈ |
0.9147878900 |
L(21) |
≈ |
0.9147878900 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.707−0.707i)T |
| 7 | 1+(0.707+0.707i)T |
good | 3 | 1+(0.707−0.707i)T2 |
| 5 | 1+(−0.707−0.707i)T2 |
| 11 | 1+(−0.707+1.70i)T+(−0.707−0.707i)T2 |
| 13 | 1+(−0.707+0.707i)T2 |
| 17 | 1+T2 |
| 19 | 1+(−0.707+0.707i)T2 |
| 23 | 1+(1−i)T−iT2 |
| 29 | 1+(0.707+1.70i)T+(−0.707+0.707i)T2 |
| 31 | 1−T2 |
| 37 | 1+(−0.707−0.292i)T+(0.707+0.707i)T2 |
| 41 | 1+iT2 |
| 43 | 1+(0.292−0.707i)T+(−0.707−0.707i)T2 |
| 47 | 1+T2 |
| 53 | 1+(0.292−0.707i)T+(−0.707−0.707i)T2 |
| 59 | 1+(−0.707−0.707i)T2 |
| 61 | 1+(0.707−0.707i)T2 |
| 67 | 1+(−0.292−0.707i)T+(−0.707+0.707i)T2 |
| 71 | 1+iT2 |
| 73 | 1+iT2 |
| 79 | 1−1.41iT−T2 |
| 83 | 1+(−0.707+0.707i)T2 |
| 89 | 1−iT2 |
| 97 | 1−T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.01896047236179747630980474753, −11.62413417223418457936967062638, −11.08933817524096374040867117362, −9.558664557522519020388867669763, −8.434536957138598386964682300441, −7.58349170248394100224433670765, −6.29893581866913974948321944843, −5.63213365356674983441617051222, −4.05555792793186239881001508243, −3.05489877579825797630944806539,
2.21337394587585197564071831515, 3.55072378156165014876097734764, 4.81090955923048536674171304725, 6.10004080784686032476692554731, 6.88124373243444318155137645877, 8.823579721935180019121213818173, 9.545982489762076035360758359071, 10.44510991769651225499325994251, 11.74811795196556075540511044261, 12.35448965942733587960770380009