Properties

Label 2-2240-1.1-c3-0-120
Degree $2$
Conductor $2240$
Sign $-1$
Analytic cond. $132.164$
Root an. cond. $11.4962$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·3-s − 5·5-s + 7·7-s − 11·9-s − 20·11-s + 10·13-s − 20·15-s − 14·17-s − 12·19-s + 28·21-s + 104·23-s + 25·25-s − 152·27-s + 122·29-s + 224·31-s − 80·33-s − 35·35-s − 158·37-s + 40·39-s + 378·41-s − 404·43-s + 55·45-s + 112·47-s + 49·49-s − 56·51-s − 270·53-s + 100·55-s + ⋯
L(s)  = 1  + 0.769·3-s − 0.447·5-s + 0.377·7-s − 0.407·9-s − 0.548·11-s + 0.213·13-s − 0.344·15-s − 0.199·17-s − 0.144·19-s + 0.290·21-s + 0.942·23-s + 1/5·25-s − 1.08·27-s + 0.781·29-s + 1.29·31-s − 0.422·33-s − 0.169·35-s − 0.702·37-s + 0.164·39-s + 1.43·41-s − 1.43·43-s + 0.182·45-s + 0.347·47-s + 1/7·49-s − 0.153·51-s − 0.699·53-s + 0.245·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2240 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2240 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2240\)    =    \(2^{6} \cdot 5 \cdot 7\)
Sign: $-1$
Analytic conductor: \(132.164\)
Root analytic conductor: \(11.4962\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 2240,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
5 \( 1 + p T \)
7 \( 1 - p T \)
good3 \( 1 - 4 T + p^{3} T^{2} \)
11 \( 1 + 20 T + p^{3} T^{2} \)
13 \( 1 - 10 T + p^{3} T^{2} \)
17 \( 1 + 14 T + p^{3} T^{2} \)
19 \( 1 + 12 T + p^{3} T^{2} \)
23 \( 1 - 104 T + p^{3} T^{2} \)
29 \( 1 - 122 T + p^{3} T^{2} \)
31 \( 1 - 224 T + p^{3} T^{2} \)
37 \( 1 + 158 T + p^{3} T^{2} \)
41 \( 1 - 378 T + p^{3} T^{2} \)
43 \( 1 + 404 T + p^{3} T^{2} \)
47 \( 1 - 112 T + p^{3} T^{2} \)
53 \( 1 + 270 T + p^{3} T^{2} \)
59 \( 1 + 324 T + p^{3} T^{2} \)
61 \( 1 - 186 T + p^{3} T^{2} \)
67 \( 1 + 156 T + p^{3} T^{2} \)
71 \( 1 + 360 T + p^{3} T^{2} \)
73 \( 1 + 102 T + p^{3} T^{2} \)
79 \( 1 + 912 T + p^{3} T^{2} \)
83 \( 1 + 1068 T + p^{3} T^{2} \)
89 \( 1 + 1590 T + p^{3} T^{2} \)
97 \( 1 - 866 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.401396749705539678280364072113, −7.71072616451701854255082284213, −6.90420882731457873032848783538, −5.93265427519409831309417099220, −4.98390944568426141396845394694, −4.20903758782323131532550554053, −3.12473531118455861327321136478, −2.57931620538888695612279615245, −1.31029344486531402605357430268, 0, 1.31029344486531402605357430268, 2.57931620538888695612279615245, 3.12473531118455861327321136478, 4.20903758782323131532550554053, 4.98390944568426141396845394694, 5.93265427519409831309417099220, 6.90420882731457873032848783538, 7.71072616451701854255082284213, 8.401396749705539678280364072113

Graph of the $Z$-function along the critical line