L(s) = 1 | + (1.36 − 0.366i)3-s + (−0.965 − 0.258i)5-s + (0.707 + 0.707i)7-s + (0.866 − 0.5i)9-s + (0.866 + 0.5i)11-s + (−0.707 − 0.707i)13-s − 1.41·15-s + (−0.5 − 0.866i)19-s + (1.22 + 0.707i)21-s + (0.965 + 0.258i)23-s + (0.866 + 0.499i)25-s + 1.41·29-s + (0.707 − 1.22i)31-s + (1.36 + 0.366i)33-s + (−0.500 − 0.866i)35-s + ⋯ |
L(s) = 1 | + (1.36 − 0.366i)3-s + (−0.965 − 0.258i)5-s + (0.707 + 0.707i)7-s + (0.866 − 0.5i)9-s + (0.866 + 0.5i)11-s + (−0.707 − 0.707i)13-s − 1.41·15-s + (−0.5 − 0.866i)19-s + (1.22 + 0.707i)21-s + (0.965 + 0.258i)23-s + (0.866 + 0.499i)25-s + 1.41·29-s + (0.707 − 1.22i)31-s + (1.36 + 0.366i)33-s + (−0.500 − 0.866i)35-s + ⋯ |
Λ(s)=(=(2240s/2ΓC(s)L(s)(0.956+0.290i)Λ(1−s)
Λ(s)=(=(2240s/2ΓC(s)L(s)(0.956+0.290i)Λ(1−s)
Degree: |
2 |
Conductor: |
2240
= 26⋅5⋅7
|
Sign: |
0.956+0.290i
|
Analytic conductor: |
1.11790 |
Root analytic conductor: |
1.05731 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2240(417,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2240, ( :0), 0.956+0.290i)
|
Particular Values
L(21) |
≈ |
1.757123181 |
L(21) |
≈ |
1.757123181 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1+(0.965+0.258i)T |
| 7 | 1+(−0.707−0.707i)T |
good | 3 | 1+(−1.36+0.366i)T+(0.866−0.5i)T2 |
| 11 | 1+(−0.866−0.5i)T+(0.5+0.866i)T2 |
| 13 | 1+(0.707+0.707i)T+iT2 |
| 17 | 1+(0.866−0.5i)T2 |
| 19 | 1+(0.5+0.866i)T+(−0.5+0.866i)T2 |
| 23 | 1+(−0.965−0.258i)T+(0.866+0.5i)T2 |
| 29 | 1−1.41T+T2 |
| 31 | 1+(−0.707+1.22i)T+(−0.5−0.866i)T2 |
| 37 | 1+(−0.965−0.258i)T+(0.866+0.5i)T2 |
| 41 | 1+T+T2 |
| 43 | 1+iT2 |
| 47 | 1+(0.258−0.965i)T+(−0.866−0.5i)T2 |
| 53 | 1+(0.965−0.258i)T+(0.866−0.5i)T2 |
| 59 | 1+(−0.5−0.866i)T2 |
| 61 | 1+(1.22−0.707i)T+(0.5−0.866i)T2 |
| 67 | 1+(0.366+1.36i)T+(−0.866+0.5i)T2 |
| 71 | 1+1.41T+T2 |
| 73 | 1+(−0.866+0.5i)T2 |
| 79 | 1+(0.5−0.866i)T2 |
| 83 | 1+(1+i)T+iT2 |
| 89 | 1+(0.5−0.866i)T2 |
| 97 | 1+(−1−i)T+iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.021011894865317524639829284714, −8.359549087364715266246244973858, −7.80498468971331996058573763493, −7.22650384465936819049157639643, −6.23338213289858797788248847714, −4.82170079110954686252092153632, −4.42940273900140448301864617860, −3.13060545303501495221070449148, −2.58920196728580531845538035283, −1.35544173830992074697060118352,
1.42184147963846898914523592432, 2.75630991348065946169831666608, 3.51710310865447464983579726563, 4.28055493696478398158568074210, 4.80402900896928506494614870743, 6.47066987866771911541175107251, 7.10958264520534036100820567510, 7.929286316013831075788731362543, 8.498454607601325677622236863548, 8.960436201754652682336314167385