Properties

Label 2-226512-1.1-c1-0-100
Degree $2$
Conductor $226512$
Sign $-1$
Analytic cond. $1808.70$
Root an. cond. $42.5289$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·5-s + 13-s − 3·17-s − 6·19-s + 7·23-s + 11·25-s − 9·29-s + 8·31-s + 2·37-s + 8·41-s + 7·43-s + 2·47-s − 7·49-s + 9·53-s + 4·59-s + 7·61-s − 4·65-s − 8·67-s − 14·71-s + 14·73-s + 5·79-s − 2·83-s + 12·85-s + 24·95-s − 4·97-s + 101-s + 103-s + ⋯
L(s)  = 1  − 1.78·5-s + 0.277·13-s − 0.727·17-s − 1.37·19-s + 1.45·23-s + 11/5·25-s − 1.67·29-s + 1.43·31-s + 0.328·37-s + 1.24·41-s + 1.06·43-s + 0.291·47-s − 49-s + 1.23·53-s + 0.520·59-s + 0.896·61-s − 0.496·65-s − 0.977·67-s − 1.66·71-s + 1.63·73-s + 0.562·79-s − 0.219·83-s + 1.30·85-s + 2.46·95-s − 0.406·97-s + 0.0995·101-s + 0.0985·103-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 226512 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 226512 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(226512\)    =    \(2^{4} \cdot 3^{2} \cdot 11^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(1808.70\)
Root analytic conductor: \(42.5289\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 226512,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
11 \( 1 \)
13 \( 1 - T \)
good5 \( 1 + 4 T + p T^{2} \)
7 \( 1 + p T^{2} \)
17 \( 1 + 3 T + p T^{2} \)
19 \( 1 + 6 T + p T^{2} \)
23 \( 1 - 7 T + p T^{2} \)
29 \( 1 + 9 T + p T^{2} \)
31 \( 1 - 8 T + p T^{2} \)
37 \( 1 - 2 T + p T^{2} \)
41 \( 1 - 8 T + p T^{2} \)
43 \( 1 - 7 T + p T^{2} \)
47 \( 1 - 2 T + p T^{2} \)
53 \( 1 - 9 T + p T^{2} \)
59 \( 1 - 4 T + p T^{2} \)
61 \( 1 - 7 T + p T^{2} \)
67 \( 1 + 8 T + p T^{2} \)
71 \( 1 + 14 T + p T^{2} \)
73 \( 1 - 14 T + p T^{2} \)
79 \( 1 - 5 T + p T^{2} \)
83 \( 1 + 2 T + p T^{2} \)
89 \( 1 + p T^{2} \)
97 \( 1 + 4 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.08560551291501, −12.63655605428560, −12.34378622474458, −11.62872864165087, −11.26125944260169, −11.06118924484871, −10.58268413820921, −10.01068428406880, −9.095342933972631, −9.018082399431156, −8.423410613631972, −7.991034755490971, −7.512398903424604, −7.069806775527618, −6.626899416015057, −6.063632297236967, −5.417608524561375, −4.656706438831828, −4.417568563494208, −3.873558724142894, −3.496861810644455, −2.666437590578066, −2.354920643788847, −1.278321620359692, −0.6728150209483487, 0, 0.6728150209483487, 1.278321620359692, 2.354920643788847, 2.666437590578066, 3.496861810644455, 3.873558724142894, 4.417568563494208, 4.656706438831828, 5.417608524561375, 6.063632297236967, 6.626899416015057, 7.069806775527618, 7.512398903424604, 7.991034755490971, 8.423410613631972, 9.018082399431156, 9.095342933972631, 10.01068428406880, 10.58268413820921, 11.06118924484871, 11.26125944260169, 11.62872864165087, 12.34378622474458, 12.63655605428560, 13.08560551291501

Graph of the $Z$-function along the critical line