Properties

Label 2-226512-1.1-c1-0-115
Degree $2$
Conductor $226512$
Sign $-1$
Analytic cond. $1808.70$
Root an. cond. $42.5289$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s − 2·7-s + 13-s − 4·17-s + 2·19-s + 7·23-s − 4·25-s − 2·29-s + 3·31-s − 2·35-s − 11·37-s + 10·41-s − 4·43-s − 4·47-s − 3·49-s − 2·53-s − 59-s + 2·61-s + 65-s + 67-s − 9·71-s + 16·73-s + 8·79-s − 4·85-s + 7·89-s − 2·91-s + 2·95-s + ⋯
L(s)  = 1  + 0.447·5-s − 0.755·7-s + 0.277·13-s − 0.970·17-s + 0.458·19-s + 1.45·23-s − 4/5·25-s − 0.371·29-s + 0.538·31-s − 0.338·35-s − 1.80·37-s + 1.56·41-s − 0.609·43-s − 0.583·47-s − 3/7·49-s − 0.274·53-s − 0.130·59-s + 0.256·61-s + 0.124·65-s + 0.122·67-s − 1.06·71-s + 1.87·73-s + 0.900·79-s − 0.433·85-s + 0.741·89-s − 0.209·91-s + 0.205·95-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 226512 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 226512 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(226512\)    =    \(2^{4} \cdot 3^{2} \cdot 11^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(1808.70\)
Root analytic conductor: \(42.5289\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 226512,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
11 \( 1 \)
13 \( 1 - T \)
good5 \( 1 - T + p T^{2} \)
7 \( 1 + 2 T + p T^{2} \)
17 \( 1 + 4 T + p T^{2} \)
19 \( 1 - 2 T + p T^{2} \)
23 \( 1 - 7 T + p T^{2} \)
29 \( 1 + 2 T + p T^{2} \)
31 \( 1 - 3 T + p T^{2} \)
37 \( 1 + 11 T + p T^{2} \)
41 \( 1 - 10 T + p T^{2} \)
43 \( 1 + 4 T + p T^{2} \)
47 \( 1 + 4 T + p T^{2} \)
53 \( 1 + 2 T + p T^{2} \)
59 \( 1 + T + p T^{2} \)
61 \( 1 - 2 T + p T^{2} \)
67 \( 1 - T + p T^{2} \)
71 \( 1 + 9 T + p T^{2} \)
73 \( 1 - 16 T + p T^{2} \)
79 \( 1 - 8 T + p T^{2} \)
83 \( 1 + p T^{2} \)
89 \( 1 - 7 T + p T^{2} \)
97 \( 1 + 13 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.17229928775125, −12.89773917210681, −12.23759182303610, −11.84405902601713, −11.24092372526028, −10.82450843045894, −10.46370974138635, −9.790915856005430, −9.343015661540156, −9.205540734438780, −8.475605348638811, −8.082336206689725, −7.359064025777045, −6.942967720268963, −6.454935258051028, −6.125646129454446, −5.383400244029357, −5.073895001712893, −4.415765143102789, −3.770509601440700, −3.284524852629678, −2.770573339394819, −2.108840581088215, −1.541376523474898, −0.7616885825412951, 0, 0.7616885825412951, 1.541376523474898, 2.108840581088215, 2.770573339394819, 3.284524852629678, 3.770509601440700, 4.415765143102789, 5.073895001712893, 5.383400244029357, 6.125646129454446, 6.454935258051028, 6.942967720268963, 7.359064025777045, 8.082336206689725, 8.475605348638811, 9.205540734438780, 9.343015661540156, 9.790915856005430, 10.46370974138635, 10.82450843045894, 11.24092372526028, 11.84405902601713, 12.23759182303610, 12.89773917210681, 13.17229928775125

Graph of the $Z$-function along the critical line