Properties

Label 2-226512-1.1-c1-0-116
Degree $2$
Conductor $226512$
Sign $-1$
Analytic cond. $1808.70$
Root an. cond. $42.5289$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s + 7-s + 13-s − 17-s − 4·19-s − 8·23-s − 4·25-s − 8·29-s + 35-s + 7·37-s − 8·41-s + 11·43-s − 47-s − 6·49-s − 2·53-s + 14·59-s + 8·61-s + 65-s − 8·67-s + 9·71-s + 4·73-s + 2·79-s − 85-s + 4·89-s + 91-s − 4·95-s + 8·97-s + ⋯
L(s)  = 1  + 0.447·5-s + 0.377·7-s + 0.277·13-s − 0.242·17-s − 0.917·19-s − 1.66·23-s − 4/5·25-s − 1.48·29-s + 0.169·35-s + 1.15·37-s − 1.24·41-s + 1.67·43-s − 0.145·47-s − 6/7·49-s − 0.274·53-s + 1.82·59-s + 1.02·61-s + 0.124·65-s − 0.977·67-s + 1.06·71-s + 0.468·73-s + 0.225·79-s − 0.108·85-s + 0.423·89-s + 0.104·91-s − 0.410·95-s + 0.812·97-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 226512 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 226512 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(226512\)    =    \(2^{4} \cdot 3^{2} \cdot 11^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(1808.70\)
Root analytic conductor: \(42.5289\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 226512,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
11 \( 1 \)
13 \( 1 - T \)
good5 \( 1 - T + p T^{2} \)
7 \( 1 - T + p T^{2} \)
17 \( 1 + T + p T^{2} \)
19 \( 1 + 4 T + p T^{2} \)
23 \( 1 + 8 T + p T^{2} \)
29 \( 1 + 8 T + p T^{2} \)
31 \( 1 + p T^{2} \)
37 \( 1 - 7 T + p T^{2} \)
41 \( 1 + 8 T + p T^{2} \)
43 \( 1 - 11 T + p T^{2} \)
47 \( 1 + T + p T^{2} \)
53 \( 1 + 2 T + p T^{2} \)
59 \( 1 - 14 T + p T^{2} \)
61 \( 1 - 8 T + p T^{2} \)
67 \( 1 + 8 T + p T^{2} \)
71 \( 1 - 9 T + p T^{2} \)
73 \( 1 - 4 T + p T^{2} \)
79 \( 1 - 2 T + p T^{2} \)
83 \( 1 + p T^{2} \)
89 \( 1 - 4 T + p T^{2} \)
97 \( 1 - 8 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.17098518765178, −12.75519316863724, −12.34674127214759, −11.57717894421839, −11.39847998876301, −10.96470768342082, −10.20746594067268, −10.01543994628227, −9.498217262590306, −8.917965741466379, −8.511772633190076, −7.886507154471373, −7.681550076385156, −6.958802318300737, −6.380684859146945, −5.921320361507268, −5.659661732959502, −4.896013067282820, −4.416026373162720, −3.766594087372089, −3.551538351357170, −2.420480939417923, −2.136002470696981, −1.684191688323479, −0.7668307246592781, 0, 0.7668307246592781, 1.684191688323479, 2.136002470696981, 2.420480939417923, 3.551538351357170, 3.766594087372089, 4.416026373162720, 4.896013067282820, 5.659661732959502, 5.921320361507268, 6.380684859146945, 6.958802318300737, 7.681550076385156, 7.886507154471373, 8.511772633190076, 8.917965741466379, 9.498217262590306, 10.01543994628227, 10.20746594067268, 10.96470768342082, 11.39847998876301, 11.57717894421839, 12.34674127214759, 12.75519316863724, 13.17098518765178

Graph of the $Z$-function along the critical line