Properties

Label 2-226512-1.1-c1-0-122
Degree $2$
Conductor $226512$
Sign $-1$
Analytic cond. $1808.70$
Root an. cond. $42.5289$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·7-s + 13-s + 5·17-s + 6·19-s − 23-s − 5·25-s − 29-s + 6·37-s − 4·41-s − 43-s + 6·47-s + 9·49-s + 53-s + 4·59-s − 61-s + 10·71-s − 2·73-s − 3·79-s + 14·83-s − 4·91-s − 12·97-s + 101-s + 103-s + 107-s + 109-s + 113-s − 20·119-s + ⋯
L(s)  = 1  − 1.51·7-s + 0.277·13-s + 1.21·17-s + 1.37·19-s − 0.208·23-s − 25-s − 0.185·29-s + 0.986·37-s − 0.624·41-s − 0.152·43-s + 0.875·47-s + 9/7·49-s + 0.137·53-s + 0.520·59-s − 0.128·61-s + 1.18·71-s − 0.234·73-s − 0.337·79-s + 1.53·83-s − 0.419·91-s − 1.21·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + 0.0940·113-s − 1.83·119-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 226512 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 226512 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(226512\)    =    \(2^{4} \cdot 3^{2} \cdot 11^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(1808.70\)
Root analytic conductor: \(42.5289\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 226512,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
11 \( 1 \)
13 \( 1 - T \)
good5 \( 1 + p T^{2} \)
7 \( 1 + 4 T + p T^{2} \)
17 \( 1 - 5 T + p T^{2} \)
19 \( 1 - 6 T + p T^{2} \)
23 \( 1 + T + p T^{2} \)
29 \( 1 + T + p T^{2} \)
31 \( 1 + p T^{2} \)
37 \( 1 - 6 T + p T^{2} \)
41 \( 1 + 4 T + p T^{2} \)
43 \( 1 + T + p T^{2} \)
47 \( 1 - 6 T + p T^{2} \)
53 \( 1 - T + p T^{2} \)
59 \( 1 - 4 T + p T^{2} \)
61 \( 1 + T + p T^{2} \)
67 \( 1 + p T^{2} \)
71 \( 1 - 10 T + p T^{2} \)
73 \( 1 + 2 T + p T^{2} \)
79 \( 1 + 3 T + p T^{2} \)
83 \( 1 - 14 T + p T^{2} \)
89 \( 1 + p T^{2} \)
97 \( 1 + 12 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.28761542500111, −12.58381713791788, −12.33525629252626, −11.84352145292042, −11.43121983402815, −10.80965955998316, −10.18283902683267, −9.922103420975933, −9.412169620409273, −9.256676830581096, −8.429032531418749, −7.885125682843656, −7.547273619910381, −6.955241837533491, −6.469982051089845, −5.994305023131523, −5.457497190349627, −5.206804057382435, −4.167484099301685, −3.813054876598937, −3.281461092893725, −2.874758333142114, −2.227317866469202, −1.339980737755165, −0.7886701747709631, 0, 0.7886701747709631, 1.339980737755165, 2.227317866469202, 2.874758333142114, 3.281461092893725, 3.813054876598937, 4.167484099301685, 5.206804057382435, 5.457497190349627, 5.994305023131523, 6.469982051089845, 6.955241837533491, 7.547273619910381, 7.885125682843656, 8.429032531418749, 9.256676830581096, 9.412169620409273, 9.922103420975933, 10.18283902683267, 10.80965955998316, 11.43121983402815, 11.84352145292042, 12.33525629252626, 12.58381713791788, 13.28761542500111

Graph of the $Z$-function along the critical line