Properties

Label 2-226512-1.1-c1-0-123
Degree $2$
Conductor $226512$
Sign $-1$
Analytic cond. $1808.70$
Root an. cond. $42.5289$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·5-s − 3·7-s + 13-s + 19-s + 4·23-s − 25-s − 8·29-s − 9·31-s − 6·35-s + 9·37-s + 2·41-s − 4·43-s + 2·47-s + 2·49-s − 2·53-s + 6·59-s + 11·61-s + 2·65-s + 15·67-s + 6·71-s − 9·73-s + 79-s − 8·89-s − 3·91-s + 2·95-s + 7·97-s + 101-s + ⋯
L(s)  = 1  + 0.894·5-s − 1.13·7-s + 0.277·13-s + 0.229·19-s + 0.834·23-s − 1/5·25-s − 1.48·29-s − 1.61·31-s − 1.01·35-s + 1.47·37-s + 0.312·41-s − 0.609·43-s + 0.291·47-s + 2/7·49-s − 0.274·53-s + 0.781·59-s + 1.40·61-s + 0.248·65-s + 1.83·67-s + 0.712·71-s − 1.05·73-s + 0.112·79-s − 0.847·89-s − 0.314·91-s + 0.205·95-s + 0.710·97-s + 0.0995·101-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 226512 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 226512 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(226512\)    =    \(2^{4} \cdot 3^{2} \cdot 11^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(1808.70\)
Root analytic conductor: \(42.5289\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 226512,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
11 \( 1 \)
13 \( 1 - T \)
good5 \( 1 - 2 T + p T^{2} \)
7 \( 1 + 3 T + p T^{2} \)
17 \( 1 + p T^{2} \)
19 \( 1 - T + p T^{2} \)
23 \( 1 - 4 T + p T^{2} \)
29 \( 1 + 8 T + p T^{2} \)
31 \( 1 + 9 T + p T^{2} \)
37 \( 1 - 9 T + p T^{2} \)
41 \( 1 - 2 T + p T^{2} \)
43 \( 1 + 4 T + p T^{2} \)
47 \( 1 - 2 T + p T^{2} \)
53 \( 1 + 2 T + p T^{2} \)
59 \( 1 - 6 T + p T^{2} \)
61 \( 1 - 11 T + p T^{2} \)
67 \( 1 - 15 T + p T^{2} \)
71 \( 1 - 6 T + p T^{2} \)
73 \( 1 + 9 T + p T^{2} \)
79 \( 1 - T + p T^{2} \)
83 \( 1 + p T^{2} \)
89 \( 1 + 8 T + p T^{2} \)
97 \( 1 - 7 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.05491680304926, −12.91872304527535, −12.52094289364635, −11.63421025927391, −11.29114744205481, −10.93716710220349, −10.21934484017617, −9.794587782708962, −9.557152909591531, −9.034246707829606, −8.711541212122672, −7.853010489290893, −7.502174851429844, −6.838790239539393, −6.529728819577427, −5.948269739647687, −5.475037972340854, −5.224438526913785, −4.321620262251457, −3.666511241986788, −3.450016926540343, −2.604339974998391, −2.211884219756977, −1.525418021852300, −0.7912401197147888, 0, 0.7912401197147888, 1.525418021852300, 2.211884219756977, 2.604339974998391, 3.450016926540343, 3.666511241986788, 4.321620262251457, 5.224438526913785, 5.475037972340854, 5.948269739647687, 6.529728819577427, 6.838790239539393, 7.502174851429844, 7.853010489290893, 8.711541212122672, 9.034246707829606, 9.557152909591531, 9.794587782708962, 10.21934484017617, 10.93716710220349, 11.29114744205481, 11.63421025927391, 12.52094289364635, 12.91872304527535, 13.05491680304926

Graph of the $Z$-function along the critical line