Properties

Label 2-226512-1.1-c1-0-140
Degree $2$
Conductor $226512$
Sign $-1$
Analytic cond. $1808.70$
Root an. cond. $42.5289$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·5-s − 2·7-s − 13-s + 3·17-s − 23-s + 11·25-s − 5·29-s − 4·31-s − 8·35-s − 2·41-s − 43-s + 12·47-s − 3·49-s − 9·53-s + 6·59-s − 5·61-s − 4·65-s + 6·67-s + 12·71-s − 6·73-s + 3·79-s + 4·83-s + 12·85-s + 2·91-s − 12·97-s + 101-s + 103-s + ⋯
L(s)  = 1  + 1.78·5-s − 0.755·7-s − 0.277·13-s + 0.727·17-s − 0.208·23-s + 11/5·25-s − 0.928·29-s − 0.718·31-s − 1.35·35-s − 0.312·41-s − 0.152·43-s + 1.75·47-s − 3/7·49-s − 1.23·53-s + 0.781·59-s − 0.640·61-s − 0.496·65-s + 0.733·67-s + 1.42·71-s − 0.702·73-s + 0.337·79-s + 0.439·83-s + 1.30·85-s + 0.209·91-s − 1.21·97-s + 0.0995·101-s + 0.0985·103-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 226512 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 226512 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(226512\)    =    \(2^{4} \cdot 3^{2} \cdot 11^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(1808.70\)
Root analytic conductor: \(42.5289\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 226512,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
11 \( 1 \)
13 \( 1 + T \)
good5 \( 1 - 4 T + p T^{2} \)
7 \( 1 + 2 T + p T^{2} \)
17 \( 1 - 3 T + p T^{2} \)
19 \( 1 + p T^{2} \)
23 \( 1 + T + p T^{2} \)
29 \( 1 + 5 T + p T^{2} \)
31 \( 1 + 4 T + p T^{2} \)
37 \( 1 + p T^{2} \)
41 \( 1 + 2 T + p T^{2} \)
43 \( 1 + T + p T^{2} \)
47 \( 1 - 12 T + p T^{2} \)
53 \( 1 + 9 T + p T^{2} \)
59 \( 1 - 6 T + p T^{2} \)
61 \( 1 + 5 T + p T^{2} \)
67 \( 1 - 6 T + p T^{2} \)
71 \( 1 - 12 T + p T^{2} \)
73 \( 1 + 6 T + p T^{2} \)
79 \( 1 - 3 T + p T^{2} \)
83 \( 1 - 4 T + p T^{2} \)
89 \( 1 + p T^{2} \)
97 \( 1 + 12 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.26186472884007, −12.72238061491220, −12.43604191286832, −11.94272746619187, −11.06822560741868, −10.88422412058710, −10.18639326803160, −9.848539809664274, −9.559336570202599, −9.120533571074823, −8.656296168151827, −7.982875615121153, −7.345212577519393, −6.962639181527372, −6.336634235426341, −5.979714719708479, −5.569996290051190, −5.103919016829113, −4.555645422429341, −3.616686121102064, −3.367765740283387, −2.525131895019615, −2.199243732010420, −1.556450563232726, −0.9272887672005608, 0, 0.9272887672005608, 1.556450563232726, 2.199243732010420, 2.525131895019615, 3.367765740283387, 3.616686121102064, 4.555645422429341, 5.103919016829113, 5.569996290051190, 5.979714719708479, 6.336634235426341, 6.962639181527372, 7.345212577519393, 7.982875615121153, 8.656296168151827, 9.120533571074823, 9.559336570202599, 9.848539809664274, 10.18639326803160, 10.88422412058710, 11.06822560741868, 11.94272746619187, 12.43604191286832, 12.72238061491220, 13.26186472884007

Graph of the $Z$-function along the critical line