L(s) = 1 | − 0.239·5-s − 7-s + 5.12·11-s − 4.88·13-s − 3.70·17-s + 3.66·19-s − 7.42·23-s − 4.94·25-s − 3.46·29-s − 0.717·31-s + 0.239·35-s + 4.60·37-s − 5.60·41-s + 12.4·43-s − 4.33·47-s + 49-s + 0.942·53-s − 1.22·55-s − 7.57·59-s + 5.50·61-s + 1.16·65-s − 0.660·67-s − 13.7·71-s − 3.66·73-s − 5.12·77-s − 6.22·79-s − 9.70·83-s + ⋯ |
L(s) = 1 | − 0.106·5-s − 0.377·7-s + 1.54·11-s − 1.35·13-s − 0.898·17-s + 0.839·19-s − 1.54·23-s − 0.988·25-s − 0.643·29-s − 0.128·31-s + 0.0404·35-s + 0.756·37-s − 0.875·41-s + 1.90·43-s − 0.633·47-s + 0.142·49-s + 0.129·53-s − 0.165·55-s − 0.986·59-s + 0.705·61-s + 0.144·65-s − 0.0806·67-s − 1.63·71-s − 0.428·73-s − 0.584·77-s − 0.700·79-s − 1.06·83-s + ⋯ |
Λ(s)=(=(2268s/2ΓC(s)L(s)−Λ(2−s)
Λ(s)=(=(2268s/2ΓC(s+1/2)L(s)−Λ(1−s)
Particular Values
L(1) |
= |
0 |
L(21) |
= |
0 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 7 | 1+T |
good | 5 | 1+0.239T+5T2 |
| 11 | 1−5.12T+11T2 |
| 13 | 1+4.88T+13T2 |
| 17 | 1+3.70T+17T2 |
| 19 | 1−3.66T+19T2 |
| 23 | 1+7.42T+23T2 |
| 29 | 1+3.46T+29T2 |
| 31 | 1+0.717T+31T2 |
| 37 | 1−4.60T+37T2 |
| 41 | 1+5.60T+41T2 |
| 43 | 1−12.4T+43T2 |
| 47 | 1+4.33T+47T2 |
| 53 | 1−0.942T+53T2 |
| 59 | 1+7.57T+59T2 |
| 61 | 1−5.50T+61T2 |
| 67 | 1+0.660T+67T2 |
| 71 | 1+13.7T+71T2 |
| 73 | 1+3.66T+73T2 |
| 79 | 1+6.22T+79T2 |
| 83 | 1+9.70T+83T2 |
| 89 | 1−7.48T+89T2 |
| 97 | 1+17.1T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.752857055851804602153299587987, −7.73614878834370079651814229214, −7.13680425738851781114520364224, −6.30293316676175881342753178060, −5.59363285794772898477881406677, −4.39095307747203220138943377344, −3.88200947149418833363244070641, −2.67870240381194052101944133764, −1.63042204979926934887120813994, 0,
1.63042204979926934887120813994, 2.67870240381194052101944133764, 3.88200947149418833363244070641, 4.39095307747203220138943377344, 5.59363285794772898477881406677, 6.30293316676175881342753178060, 7.13680425738851781114520364224, 7.73614878834370079651814229214, 8.752857055851804602153299587987