L(s) = 1 | + (−1.00 − 1.73i)5-s + (−2.64 + 0.0655i)7-s + (4.15 + 2.40i)11-s + 0.998i·13-s + (0.0445 − 0.0772i)17-s + (3.68 − 2.12i)19-s + (−0.839 + 0.484i)23-s + (0.492 − 0.853i)25-s + 3.38i·29-s + (−4.35 − 2.51i)31-s + (2.76 + 4.52i)35-s + (−0.0675 − 0.117i)37-s − 11.2·41-s + 7.33·43-s + (1.76 + 3.06i)47-s + ⋯ |
L(s) = 1 | + (−0.447 − 0.775i)5-s + (−0.999 + 0.0247i)7-s + (1.25 + 0.723i)11-s + 0.276i·13-s + (0.0108 − 0.0187i)17-s + (0.846 − 0.488i)19-s + (−0.175 + 0.101i)23-s + (0.0985 − 0.170i)25-s + 0.628i·29-s + (−0.782 − 0.451i)31-s + (0.467 + 0.764i)35-s + (−0.0111 − 0.0192i)37-s − 1.75·41-s + 1.11·43-s + (0.257 + 0.446i)47-s + ⋯ |
Λ(s)=(=(2268s/2ΓC(s)L(s)(0.624+0.780i)Λ(2−s)
Λ(s)=(=(2268s/2ΓC(s+1/2)L(s)(0.624+0.780i)Λ(1−s)
Degree: |
2 |
Conductor: |
2268
= 22⋅34⋅7
|
Sign: |
0.624+0.780i
|
Analytic conductor: |
18.1100 |
Root analytic conductor: |
4.25559 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ2268(1781,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 2268, ( :1/2), 0.624+0.780i)
|
Particular Values
L(1) |
≈ |
1.408812770 |
L(21) |
≈ |
1.408812770 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 7 | 1+(2.64−0.0655i)T |
good | 5 | 1+(1.00+1.73i)T+(−2.5+4.33i)T2 |
| 11 | 1+(−4.15−2.40i)T+(5.5+9.52i)T2 |
| 13 | 1−0.998iT−13T2 |
| 17 | 1+(−0.0445+0.0772i)T+(−8.5−14.7i)T2 |
| 19 | 1+(−3.68+2.12i)T+(9.5−16.4i)T2 |
| 23 | 1+(0.839−0.484i)T+(11.5−19.9i)T2 |
| 29 | 1−3.38iT−29T2 |
| 31 | 1+(4.35+2.51i)T+(15.5+26.8i)T2 |
| 37 | 1+(0.0675+0.117i)T+(−18.5+32.0i)T2 |
| 41 | 1+11.2T+41T2 |
| 43 | 1−7.33T+43T2 |
| 47 | 1+(−1.76−3.06i)T+(−23.5+40.7i)T2 |
| 53 | 1+(−5.31−3.07i)T+(26.5+45.8i)T2 |
| 59 | 1+(−4.88+8.45i)T+(−29.5−51.0i)T2 |
| 61 | 1+(−11.2+6.51i)T+(30.5−52.8i)T2 |
| 67 | 1+(−7.57+13.1i)T+(−33.5−58.0i)T2 |
| 71 | 1−4.56iT−71T2 |
| 73 | 1+(−3.73−2.15i)T+(36.5+63.2i)T2 |
| 79 | 1+(5.94+10.2i)T+(−39.5+68.4i)T2 |
| 83 | 1+3.24T+83T2 |
| 89 | 1+(1.06+1.84i)T+(−44.5+77.0i)T2 |
| 97 | 1+1.19iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.071071749210324185026879157932, −8.264550309658191306709920212846, −7.16561775246882083767400147528, −6.77647157651036452415645510698, −5.76469275862083646164697294397, −4.82762595780422409817641529271, −4.01791832561760453220697112515, −3.27948935161328281803935849304, −1.90247432923441240009791610590, −0.63683166301827646020471717463,
0.960047812704914356800512619972, 2.54335292293225370212705110130, 3.63864856513276878745749738299, 3.75919946274638844155760458928, 5.35869433633836208115649483154, 6.10468583590347405759379470439, 6.88589860416238642623425061999, 7.35635899233359762942360021596, 8.471120523076945509270082915443, 9.088724020351578058412230996037